B-spline bases and osculating flats : one result of H.-P. Seidel revisited
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 6, p. 1177-1186
Along with the classical requirements on B-splines bases (minimal support, positivity, normalization) we show that it is natural to introduce an additional “end point property”. When dealing with multiple knots, this additional property is exactly the appropriate requirement to obtain the poles of nondegenerate splines as intersections of osculating flats at consecutive knots.
DOI : https://doi.org/10.1051/m2an:2003010
Classification:  65D17
Keywords: geometric design, B-spline basis, blossoming, osculating flats
@article{M2AN_2002__36_6_1177_0,
     author = {Mazure, Marie-Laurence},
     title = {B-spline bases and osculating flats : one result of H.-P. Seidel revisited},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {6},
     year = {2002},
     pages = {1177-1186},
     doi = {10.1051/m2an:2003010},
     zbl = {1027.65020},
     mrnumber = {1958664},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2002__36_6_1177_0}
}
Mazure, Marie-Laurence. B-spline bases and osculating flats : one result of H.-P. Seidel revisited. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 6, pp. 1177-1186. doi : 10.1051/m2an:2003010. http://www.numdam.org/item/M2AN_2002__36_6_1177_0/

[1] N. Dyn and C.A. Micchelli, Piecewise polynomial spaces and geometric continuity of curves. Numer. Math. 54 (1988) 319-337. | Zbl 0638.65010

[2] T.N.T. Goodman, Properties of β-splines. J. Approx. Theory 44 (1985) 132-153. | Zbl 0569.41010

[3] M.-L. Mazure, Blossoming: a geometrical approach. Constr. Approx. 15 (1999) 33-68. | Zbl 0924.65010

[4] M.-L. Mazure, Quasi-Chebyshev splines with connexion matrices. Application to variable degree polynomial splines. Comput. Aided Geom. Design 18 (2001) 287-298. | Zbl 0978.41006

[5] H. Pottmann, The geometry of Tchebycheffian splines. Comput. Aided Geom. Design 10 (1993) 181-210. | Zbl 0777.41016

[6] L. Ramshaw, Blossoms are polar forms. Comput. Aided Geom. Design 6 (1989) 323-358. | Zbl 0705.65008

[7] H.-P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree. RAIRO Modél. Math. Anal. Numér. 26 (1992) 149-176. | Numdam | Zbl 0752.65008

[8] H.-P. Seidel, Polar forms for geometrically continuous spline curves of arbitrary degree. ACM Trans. Graphics 12 (1993) 1-34. | Zbl 0770.68116