A finite element method for domain decomposition with non-matching grids
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 2, p. 209-225

In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson's equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.

DOI : https://doi.org/10.1051/m2an:2003023
Classification:  65N30,  65N55
Keywords: Nitsche's method, domain decomposition, non-matching grids
     author = {Becker, Roland and Hansbo, Peter and Stenberg, Rolf},
     title = {A finite element method for domain decomposition with non-matching grids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     pages = {209-225},
     doi = {10.1051/m2an:2003023},
     zbl = {1047.65099},
     mrnumber = {1991197},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2003__37_2_209_0}
Becker, Roland; Hansbo, Peter; Stenberg, Rolf. A finite element method for domain decomposition with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 37 (2003) no. 2, pp. 209-225. doi : 10.1051/m2an:2003023. http://www.numdam.org/item/M2AN_2003__37_2_209_0/

[1] J.-P. Aubin, Approximation of Elliptic Boundary-Value Problem. Wiley (1972). | MR 478662 | Zbl 0248.65063

[2] D. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | Zbl 0482.65060

[3] C. Baiocchi, F. Brezzi and L.D. Marini, Stabilization of Galerkin methods and applications to domain decomposition, in Future Tendencies in Computer Science, Control and Applied Mathematics, A. Bensoussan and J.-P. Verjus Eds., Springer (1992) 345-355.

[4] J.C. Barbosa and T.J.R. Hughes, Boundary Lagrange multipliers in finite element methods: error analysis in natural norms. Numer. Math. 62 (1992) 1-15. | Zbl 0765.65102

[5] J.W. Barrett and C.M. Elliot, Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343-366. | Zbl 0614.65116

[6] R. Becker and P. Hansbo, Discontinuous Galerkin methods for convection-diffusion problems with arbitrary Péclet number, in Numerical Mathematics and Advanced Applications: Proceedings of the 3rd European Conference, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific (2000) 100-109. | Zbl 0968.65084

[7] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237-264. | Zbl 0868.65076

[8] C. Bernadi, Y. Maday and A. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and Their Application, H. Brezis and J.L. Lions Eds., Pitman (1989). | Zbl 0797.65094

[9] F. Brezzi, L.P. Franca, D. Marini and A. Russo, Stabilization techniques for domain decomposition methods with non-matching grids, IAN-CNR Report N. 1037, Istituto di Analisi Numerica Pavia.

[10] J. Freund and R. Stenberg, On weakly imposed boundary conditions for second order problems, in Proceedings of the Ninth Int. Conf. Finite Elements in Fluids, M. Morandi Cecchi et al. Eds., Venice (1995) 327-336.

[11] J. Freund, Space-time finite element methods for second order problems: an algorithmic approach. Acta Polytech. Scand. Math. Comput. Manage. Eng. Ser. 79 (1996). | MR 1422305 | Zbl 0861.65083

[12] B. Heinrich and S. Nicaise, Nitsche mortar finite element method for transmission problems with singularities. SFB393-Preprint 2001-10, Technische Universität Chemnitz (2001). | MR 1975269 | Zbl 1027.65149

[13] B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217-238. | Zbl 1002.65124

[14] C. Johnson and P. Hansbo, Adaptive finite element methods in computational mechanics. Comput. Methods Appl. Mech. Engrg. 101 (1992) 143-181. | Zbl 0778.73071

[15] P. Le Tallec and T. Sassi, Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64 (1995) 1367-1396. | Zbl 0849.65087

[16] P.L. Lions, On the Schwarz alternating method III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan, R. Glowinski, J. Periaux and O.B. Widlund Eds., SIAM (1989) 202-223. | Zbl 0704.65090

[17] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | Zbl 0229.65079

[18] R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139-148. | Zbl 0856.65130

[19] R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona (1998). | MR 1839048

[20] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer (1997). | MR 1479170 | Zbl 0884.65097

[21] B.I. Wohlmuth, A residual based error estimator for mortar finite element discretizations. Numer. Math. 84 (1999) 143-171. | Zbl 0962.65090