We consider a fully practical finite element approximation of the following degenerate system
Classification : 35K55, 35K65, 35R35, 65M12, 65M60, 80A22
Mots clés : Stefan problem, Joule heating, degenerate system, finite elements, convergence
@article{M2AN_2004__38_4_633_0, author = {Barrett, John W. and N\"urnberg, Robert}, title = {Finite element approximation of a Stefan problem with degenerate Joule heating}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, pages = {633--652}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004030}, zbl = {1072.80010}, mrnumber = {2087727}, language = {en}, url = {archive.numdam.org/item/M2AN_2004__38_4_633_0/} }
Barrett, John W.; Nürnberg, Robert. Finite element approximation of a Stefan problem with degenerate Joule heating. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 38 (2004) no. 4, pp. 633-652. doi : 10.1051/m2an:2004030. http://archive.numdam.org/item/M2AN_2004__38_4_633_0/
[1] A finite element method on a fixed mesh for the Stefan problem with convection in a saturated porous medium, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (London) (1982) 389-409. | Zbl 0527.76096
and ,[2] Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323-363. | Zbl 1143.76473
and ,[3] On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J. Numer. Anal. 1 (1981) 115-125. | Zbl 0469.65042
,[4] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | Zbl 0638.65088
,[5] A finite element model for the time-dependent Joule heating problem. Math. Comp. 64 (1995) 1433-1453. | Zbl 0846.65047
and ,[6] Existence of generalized weak solutions to a model for in situ vitrification. European J. Appl. Math. 9 (1998) 543-559. | Zbl 0939.35197
, and ,[7] Modeling of the in situ vitrification process. Amer. Ceram. Soc. Bull. 70 (1991) 832-835.
and ,[8] Compact sets in the space . Ann. Math. Pura. Appl. 146 (1987) 65-96. | Zbl 0629.46031
,[9] A compactness theorem and its application to a system of partial differential equations. Differential Integral Equations 9 (1996) 119-136. | Zbl 0843.35049
,[10] Existence for a model arising from the in situ vitrification process. J. Math. Anal. Appl. 271 (2002) 333-342. | Zbl 1011.35135
,