In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of
Mots-clés : unbounded domains, inverted elements method, weighted Sobolev spaces
@article{M2AN_2005__39_1_109_0, author = {Boulmezaoud, Tahar Zam\`ene}, title = {Inverted finite elements : a new method for solving elliptic problems in unbounded domains}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {109--145}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/m2an:2005001}, mrnumber = {2136202}, zbl = {1078.65102}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2005001/} }
TY - JOUR AU - Boulmezaoud, Tahar Zamène TI - Inverted finite elements : a new method for solving elliptic problems in unbounded domains JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 109 EP - 145 VL - 39 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2005001/ DO - 10.1051/m2an:2005001 LA - en ID - M2AN_2005__39_1_109_0 ER -
%0 Journal Article %A Boulmezaoud, Tahar Zamène %T Inverted finite elements : a new method for solving elliptic problems in unbounded domains %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 109-145 %V 39 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2005001/ %R 10.1051/m2an:2005001 %G en %F M2AN_2005__39_1_109_0
Boulmezaoud, Tahar Zamène. Inverted finite elements : a new method for solving elliptic problems in unbounded domains. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 109-145. doi : 10.1051/m2an:2005001. https://www.numdam.org/articles/10.1051/m2an:2005001/
[1] Compact imbeddings of weighted Sobolev spaces on unbounded domains. J. Differential Equations 9 (1971) 325-334. | Zbl
,
[2] Problème de Stokes dans
[3] Weighted Sobolev spaces for Laplace’s equation in
[4] Dirichlet and Neumann exterior problems for the
[5] A perfectly matched layer for absoption of electromagnetics waves. J. Comput. Physics 114 (1994) 185-200. | Zbl
,[6] Perfectly matched layer for the fdtd solution of wave-structure interaction problems. IEEE Trans. Antennas Propagat. 44 (1996) 110-117.
,[7] Diffraction and refraction of surface waves using finite and infinite elements. Internat. J. Numer. Methods Engrg. 11 (1977) 1271-1290. | Zbl
and ,
[8] Vector potentials in the half-space of
[9] On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces. Math. Methods Appl. Sci. 25 (2002) 373-398. | Zbl
,[10] On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26 (2003) 633-669.
,[11] A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Amer. 96 (1994) 2798-2816.
,[12] Spectral methods for exterior elliptic problems. Numer. Math. 46 (1985) 505-520. | Zbl
, , ,
[13] Elliptic systems in
[14] Ph.-G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978). | MR | Zbl
[15] Integral equation methods in scattering theory. Pure Appl. Math. John Wiley & Sons Inc., New York (1983). | MR | Zbl
and ,[16] Analysis of a coupled finite-infinite element method for exterior Helmholtz problems. Numer. Math. 88 (2001) 43-73. | Zbl
and ,[17] Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5 (1955) 305-370, (1953-54). | Numdam | Zbl
and ,[18] A summary of infinite element formulations for exterior Helmholtz problems. Comput. Methods Appl. Mech. Engrg. 164 (1998) 95-105. | Zbl
,
[19] Solution of
[20] The divergence, curl and Stokes operators in exterior domains of
[21] The Stokes problem and vector potential operator in three-dimensional exterior domains: an approach in weighted Sobolev spaces. Differential Integral Equations 7 (1994) 535-570. | Zbl
,[22] Étude de quelques problèmes aux limites extérieures et résolution par équations intégrales. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris (1987).
,[23] Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp. 32 (1978) 973-990. | Zbl
and ,[24] A spectral method for the Stokes problem in three-dimensional unbounded domains. Math. Comp. 70 (2001) 1417-1436 (electronic). | Zbl
,[25] Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1971) 227-272. | Numdam | Zbl
,[26] Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). | JFM | MR | Zbl
, and ,[27] Sur la complétion par rapport à une intégrale de Dirichlet. Math. Scand. 4 (1956) 259-270. | Zbl
and ,[28] Finite element analysis of acoustic scattering, volume 132 of Applied Mathematical Sciences. Springer-Verlag, New York (1998). | MR | Zbl
,[29] Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16 (1967) 209-292. | Zbl
,[30] Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York (1985). | MR | Zbl
,[31] Some properties of weighted sobolev spaces in unbounded domains. In preparation.
and ,
[32] Méthode d’éléments finis pour la résolution numérique de problèmes extérieurs en dimension
[33] Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, in Elliptische Differentialgleichungen (Meeting, Rostock, 1977). Wilhelm-Pieck-Univ. Rostock (1978) 161-190. | Zbl
and ,
[34] Curved finite element methods for the solution of singular integral equations on surfaces in
[35] Résolution des Équations de Maxwell par Méthodes Intégrales. Cours de D.E.A. École Polytechnique, Paris (1998).
.[36] Solution of acoustic scattering problems by means of second kind integral equations. Wave Motion 5 (1983) 257-272. | Zbl
,Cité par Sources :