An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 39 (2005) no. 3, p. 477-486

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.-L. Lions’ book that means with constant viscosity coefficients.

DOI : https://doi.org/10.1051/m2an:2005026
Classification:  35Q30
Keywords: compressible flows, Navier-Stokes equations, low Mach (Froude) number limit shallow-water equations, lake equations, nonconstant density
@article{M2AN_2005__39_3_477_0,
     author = {Bresch, Didier and Gisclon, Marguerite and Lin, Chi-Kun},
     title = {An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {3},
     year = {2005},
     pages = {477-486},
     doi = {10.1051/m2an:2005026},
     zbl = {1080.35065},
     mrnumber = {2157146},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2005__39_3_477_0}
}
Bresch, Didier; Gisclon, Marguerite; Lin, Chi-Kun. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 39 (2005) no. 3, pp. 477-486. doi : 10.1051/m2an:2005026. http://www.numdam.org/item/M2AN_2005__39_3_477_0/

[1] T. Alazard, Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004). | Zbl 1101.35050

[2] D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211-223. | Zbl 1037.76012

[3] D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47-82. | Zbl 1138.76446

[4] D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009-1037. | Zbl 1106.76436

[5] D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125-148. | Zbl 1114.76347

[6] R. Danchin, Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000). | Numdam | MR 1860675 | Zbl 1061.35511

[7] B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461-471. | Zbl 0992.35067

[8] I. Gallagher, Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003). | Numdam | MR 2167201 | Zbl pre02213913

[9] J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl 0997.76023

[10] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl 0885.35090

[11] C.D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493-1515. | Zbl 0999.76033

[12] C.D. Levermore, M. Oliver and E.S. Titi, Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479-510. | Zbl 0953.76011

[13] P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998). | MR 1637634 | Zbl 0908.76004

[14] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585-627. | Zbl 0909.35101

[15] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61-90. | Zbl 0974.76072

[16] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001). | MR 1834114

[17] M. Oliver, Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311-324. | Zbl 0907.76013

[18] J. Pedlosky, Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987). | Zbl 0429.76001