Preconditioners for hyperbolic systems are numerical artifacts to accelerate the convergence to a steady state. In addition, the preconditioner should also be included in the artificial viscosity or upwinding terms to improve the accuracy of the steady state solution. For time dependent problems we use a dual time stepping approach. The preconditioner affects the convergence rate and the accuracy of the subiterations within each physical time step. We consider two types of local preconditioners: Jacobi and low speed preconditioning. We can express the algorithm in several sets of variables while using only the conservation variables for the flux terms. We compare the effect of these various variable sets on the efficiency and accuracy of the scheme.

Classification: 65M06, 76M12

Keywords: low Mach, preconditioning, Jacobi, dual time step, compressible Navier Stokes

@article{M2AN_2005__39_3_515_0, author = {Turkel, Eli and Vatsa, Veer N.}, title = {Local preconditioners for steady and unsteady flow applications}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {39}, number = {3}, year = {2005}, pages = {515-535}, doi = {10.1051/m2an:2005021}, zbl = {1130.76055}, mrnumber = {2157148}, language = {en}, url = {http://www.numdam.org/item/M2AN_2005__39_3_515_0} }

Turkel, Eli; Vatsa, Veer N. Local preconditioners for steady and unsteady flow applications. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 39 (2005) no. 3, pp. 515-535. doi : 10.1051/m2an:2005021. http://www.numdam.org/item/M2AN_2005__39_3_515_0/

[1] Time splitting for two and three-dimensional Navier-Stokes equations with mixed derivatives. J. Comput. Phys. 41 (1981) 1-33. | Zbl 0467.76062

and ,[2] Analysis of a Local Matrix Preconditioner for the 2-D Navier-Stokes Equations. AIAA Paper 1993-3330 (1993).

,[3] Multi-level adaptive solutions to boundary value problems. Math. Comp. 31 (1977) 333-390. | Zbl 0373.65054

,[4] Fast Preconditioned Multigrid Solution of the Euler and Navier-Stokes Equations for Steady Compressible Flows. AIAA Paper 2002-0963 (2002). | Zbl 1032.76611

and ,[5] Practical Implementation and Improvement of Preconditioning Methods for Explicit Multistage Flow Solvers. AIAA Paper 2004-0763 (2004).

and ,[6] The Evolution of Computational Methods in Aerodynamics. ASME J. Appl. Mech. 50 (1983) 1052-1070. | Zbl 0556.76045

,[7] Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows past Airfoils and Wings. AIAA Paper 1991-1596 (1991).

,[8] How Many Steps are Required to Solve the Euler equations of Steady, Compressible Flow: In Search of a Fast Solution Algorithm. AIAA Paper 2001-2673 (2001).

and ,[9] Numerical Solutions of the Euler Equations by a Finite Volume Method using Runge-Kutta Time-Stepping Schemes. AIAA Paper 1981-1259 (1981).

, and ,[10] Validation of a Multigrid Method for the Reynolds Averaged Equations. AIAA Paper 1988-0414 (1988).

and ,[11] Multigrid Acceleration of Time-Accurate Navier-Stokes Calculations, in 7th Copper Mountain Conference on Multigrid Methods (1995).

and ,[12] Implementation of Preconditioned Dual-Time Procedures in OVERFLOW. AIAA paper 2003-0072 (2003).

, and ,[13] Preconditioned multigrid methods for compressible flow codes on stretched meshes. J. Comput. Phys. 136 (1997) 425-445. | Zbl 0893.76061

and ,[14] A Time-Accurate Algorithm for Chemical Non-Equilibrium Viscous Flows at All Speeds. AIAA Paper 1992-3639 (1992).

, and ,[15] On central difference and upwind schemes. J. Comput. Phys. 101 (1992) 292-306. | Zbl 0757.76044

and ,[16] Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277-298. | Zbl 0633.76069

,[17] A review of preconditioning methods for fluid dynamics. Appl. Numer. Math. 12 (1993) 257-284. | Zbl 0770.76048

,[18] Preconditioning-Squared Methods for Multidimensional Aerodynamics. AIAA Paper 1997-2025 (1997).

,[19] Preconditioning Techniques in Computational Fluid Dynamics. An. Rev. Fluid Mech. 31 (1999) 385-416.

,[20] Robust Preconditioning for Steady and Unsteady Viscous Flows. AIAA Paper 2002-0962 (2002).

,[21] Effect of artificial viscosity on three-dimensional flow solutions. AIAA Journal 32 (1993) 39-45. | Zbl 0792.76056

and ,[22] Choice of Variables and Preconditioning for Time Dependent Problems. AIAA Paper 2003-3692 (2003).

and ,[23] Preconditioning and the Limit to the Incompressible Flow Equations, in Computing the Future: Frontiers of Computational Fluid Dynamics 1994, D.A. Caughey and M.M. Hafez Eds., Wiley Publishing (1994) 215-234. | Zbl 0988.76059

, and ,[24] Preconditioning Methods for Low Speed Flow. AIAA Paper 1996-2460 (1996).

, and ,[25] Uni-directional Implicit Acceleration Techniques. 14th AIAA Computational Fluid Dynamics Conference. AIAA paper 1999-3265 (1999).

, and ,[26] Characteristic Time-Stepping or Local Preconditioning of the Euler Equations. AIAA Paper 1991-1552 (1991).

, and ,[27] Development of a Multigrid Code for 3-d Navier-Stokes Equations and its Application to a Grid-refinement Study. Comput. Fluids 18 (1990) 391-403. | Zbl 0708.76084

and ,[28] A Multigrid Based Multiblock Flow Solver for Practical Aerodynamic Configurations, in Computing the Future: Frontiers of Computational Fluid Dynamics 1994, D.A. Caughey and M.M. Hafez Eds., Wiley Publishing (1994) 414-447.

, and ,[29] Dual Time Stepping and Preconditioning for Unsteady Computations. AIAA Paper 1995-0078 (1995).

and ,[30] Influence of Stagnation Regions on Preconditioned Solutions at Low Speeds. AIAA Paper 2003-0435 (2003).

, and ,[31] Variable Coefficient Implicit Residual Smoothing, 12th International Conference on Numerical Methods in Fluid Dynamics (1990).

and ,[32] A Time Accurate, Implicit Method for Chemically Reacting Flows at All Mach Numbers. AIAA Paper 1991-0581 (1991).

, and ,