We present a new stabilized mixed finite element method for the linear elasticity problem in ${\mathbb{R}}^{2}$. The approach is based on the introduction of Galerkin least-squares terms arising from the constitutive and equilibrium equations, and from the relation defining the rotation in terms of the displacement. We show that the resulting augmented variational formulation and the associated Galerkin scheme are well posed, and that the latter becomes locking-free and asymptotically locking-free for Dirichlet and mixed boundary conditions, respectively. In particular, the discrete scheme allows the utilization of Raviart-Thomas spaces of lowest order for the stress tensor, piecewise linear elements for the displacement, and piecewise constants for the rotation. In the case of mixed boundary conditions, the essential one (Neumann) is imposed weakly, which yields the introduction of the trace of the displacement as a suitable Lagrange multiplier. This trace is then approximated by piecewise linear elements on an independent partition of the Neumann boundary whose mesh size needs to satisfy a compatibility condition with the mesh size associated to the triangulation of the domain. Several numerical results illustrating the good performance of the augmented mixed finite element scheme in the case of Dirichlet boundary conditions are also reported.

Keywords: mixed-FEM, augmented formulation, linear elasticity, locking-free

@article{M2AN_2006__40_1_1_0, author = {Gatica, Gabriel N.}, title = {Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb {RT}_0 - \mathbb {P}_1 - \mathbb {P}_0$ approximations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1--28}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, doi = {10.1051/m2an:2006003}, mrnumber = {2223502}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2006003/} }

TY - JOUR AU - Gatica, Gabriel N. TI - Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb {RT}_0 - \mathbb {P}_1 - \mathbb {P}_0$ approximations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 1 EP - 28 VL - 40 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2006003/ DO - 10.1051/m2an:2006003 LA - en ID - M2AN_2006__40_1_1_0 ER -

%0 Journal Article %A Gatica, Gabriel N. %T Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb {RT}_0 - \mathbb {P}_1 - \mathbb {P}_0$ approximations %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 1-28 %V 40 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2006003/ %R 10.1051/m2an:2006003 %G en %F M2AN_2006__40_1_1_0

Gatica, Gabriel N. Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb {RT}_0 - \mathbb {P}_1 - \mathbb {P}_0$ approximations. ESAIM: Modélisation mathématique et analyse numérique, Volume 40 (2006) no. 1, pp. 1-28. doi : 10.1051/m2an:2006003. http://archive.numdam.org/articles/10.1051/m2an:2006003/

[1] PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347-367. | Zbl

, and ,[2] A stable finite element method for the Stokes equations. Calcolo 21 (1984) 337-344. | Zbl

, and ,[3] A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1-22. | Zbl

, and ,[4] Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Rational Mech. Analysis 98 (1987) 143-190. | Zbl

and ,[5] On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations 19 (2003) 192-210. | Zbl

and ,[6] A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a posteriori error estimate. Numer. Math. 91 (2002) 197-222. | Zbl

, and ,[7] A wavelet-based stabilization of the mixed finite element method with Lagrange multipliers. Appl. Math. Lett. (in press). | MR | Zbl

, and ,[8] Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997). | MR | Zbl

,[9] Stabilized mixed methods for the Stokes problem. Numer. Math. 53 (1988) 225-235. | Zbl

and ,[10] Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR | Zbl

and ,[11] A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457-491. | Zbl

and ,[12] Variable degree mixed methods for second order elliptic problems. Mat. Apl. Comput. 4 (1985) 19-34. | Zbl

, and ,[13] Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | Zbl

, and ,[14] Mixed finite element methods with continuous stresses. Math. Models Methods Appl. Sci. 3 (1993) 275-287. | Zbl

, and ,[15] Locking-free mixed stabilized finite element methods for bending-dominated shells, in Plates and shells (Quebec, QC, 1996), American Mathematical Society, Providence, RI, CRM Proceedings Lecture Notes 21 (1999) 81-94. | Zbl

and ,[16] The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR | Zbl

,[17] An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495-508. | Zbl

and ,[18] Analysis of some stabilized low-order mixed finite element methods for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Engrg. 191 (2001) 157-179. | Zbl

and ,[19] New Mixed Finite Element Methods. Ph.D. Thesis, Stanford University (1987).

,[20] Two classes of finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1988) 89-129. | Zbl

and ,[21] Unlocking with residual-free bubbles. Comput. Methods Appl. Mech. Engrg. 142 (1997) 361-364. | Zbl

and ,[22] Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680-1697. | Zbl

and ,[23] Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491-511. | Zbl

,[24] Eigenvalue problems associated with Korn's inequalities. Arch. Rational Mech. Anal. 40 (1971) 384-402. | Zbl

and ,[25] On inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Rational Mech. Analysis 82 (1983) 165-179. | Zbl

and ,[26] Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1-10. | Zbl

and ,[27] Stabilized mixed finite element approximations of incompressible flow problems. Zeitschrift für Angewandte Mathematik und Mechanik 72 (1992) T483-T486. | Zbl

and ,[28] Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). | MR | Zbl

,[29] A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4341-4370. | Zbl

and ,[30] A new locking-free equilibrium mixed element for plane elasticity with continuous displacement interpolation. Comput. Methods Appl. Mech. Engrg 191 (2002) 1843-1860. | Zbl

and ,[31] Fourier analysis of stabilized ${Q}_{1}$-${Q}_{1}$ mixed finite element approximation. SIAM J. Numer. Anal. 39 (2001) 817-833. | Zbl

and ,[32] A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513-538. | Zbl

,[33] Stabilized hybrid finite element methods based on the combination of saddle point principles of elasticity problems. Math. Comput. 72 (2003) 1655-1673. | Zbl

,[34] Analysis of locally stabilized mixed finite element methods for the linear elasticity problem. Chinese J. Engrg Math. 12 (1995) 1-6. | Zbl

and ,*Cited by Sources: *