Classification: 65N12, 65N15, 65N30, 74B05

Keywords: mixed-FEM, augmented formulation, linear elasticity, locking-free

@article{M2AN_2006__40_1_1_0, author = {Gatica, Gabriel N.}, title = {Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb {RT}\_0 - \mathbb {P}\_1 - \mathbb {P}\_0$ approximations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, pages = {1-28}, doi = {10.1051/m2an:2006003}, zbl = {pre05038390}, mrnumber = {2223502}, language = {en}, url = {http://www.numdam.org/item/M2AN_2006__40_1_1_0} }

Gatica, Gabriel N. Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb {RT}_0 - \mathbb {P}_1 - \mathbb {P}_0$ approximations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 1, pp. 1-28. doi : 10.1051/m2an:2006003. http://www.numdam.org/item/M2AN_2006__40_1_1_0/

[1] PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347-367. | Zbl 0633.73074

, and ,[2] A stable finite element method for the Stokes equations. Calcolo 21 (1984) 337-344. | Zbl 0593.76039

, and ,[3] A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1-22. | Zbl 0558.73066

, and ,[4] Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials. Arch. Rational Mech. Analysis 98 (1987) 143-190. | Zbl 0618.73012

and ,[5] On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differential Equations 19 (2003) 192-210. | Zbl 1021.65056

and ,[6] A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a posteriori error estimate. Numer. Math. 91 (2002) 197-222. | Zbl 1067.74062

, and ,[7] A wavelet-based stabilization of the mixed finite element method with Lagrange multipliers. Appl. Math. Lett. (in press). | MR 2202412 | Zbl 1101.65106

, and ,[8] Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997). | MR 1463151 | Zbl 0894.65054

,[9] Stabilized mixed methods for the Stokes problem. Numer. Math. 53 (1988) 225-235. | Zbl 0669.76052

and ,[10] Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR 1115205 | Zbl 0788.73002

and ,[11] A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89 (2001) 457-491. | Zbl 1009.65067

and ,[12] Variable degree mixed methods for second order elliptic problems. Mat. Apl. Comput. 4 (1985) 19-34. | Zbl 0592.65073

, and ,[13] Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | Zbl 0599.65072

, and ,[14] Mixed finite element methods with continuous stresses. Math. Models Methods Appl. Sci. 3 (1993) 275-287. | Zbl 0774.73066

, and ,[15] Locking-free mixed stabilized finite element methods for bending-dominated shells, in Plates and shells (Quebec, QC, 1996), American Mathematical Society, Providence, RI, CRM Proceedings Lecture Notes 21 (1999) 81-94. | Zbl 0958.74060

and ,[16] The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR 520174 | Zbl 0383.65058

,[17] An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495-508. | Zbl 0669.76051

and ,[18] Analysis of some stabilized low-order mixed finite element methods for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Engrg. 191 (2001) 157-179. | Zbl 1041.74067

and ,[19] New Mixed Finite Element Methods. Ph.D. Thesis, Stanford University (1987).

,[20] Two classes of finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1988) 89-129. | Zbl 0629.73053

and ,[21] Unlocking with residual-free bubbles. Comput. Methods Appl. Mech. Engrg. 142 (1997) 361-364. | Zbl 0890.73064

and ,[22] Error analysis of Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680-1697. | Zbl 0759.73055

and ,[23] Korn's inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491-511. | Zbl 0840.73010

,[24] Eigenvalue problems associated with Korn's inequalities. Arch. Rational Mech. Anal. 40 (1971) 384-402. | Zbl 0223.73011

and ,[25] On inequalities of Korn, Friedrichs and Babuška-Aziz. Arch. Rational Mech. Analysis 82 (1983) 165-179. | Zbl 0512.73017

and ,[26] Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1-10. | Zbl 0738.76040

and ,[27] Stabilized mixed finite element approximations of incompressible flow problems. Zeitschrift für Angewandte Mathematik und Mechanik 72 (1992) T483-T486. | Zbl 0766.76050

and ,[28] Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). | MR 1742312 | Zbl 0948.35001

,[29] A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4341-4370. | Zbl 1015.76047

and ,[30] A new locking-free equilibrium mixed element for plane elasticity with continuous displacement interpolation. Comput. Methods Appl. Mech. Engrg 191 (2002) 1843-1860. | Zbl 1098.74708

and ,[31] Fourier analysis of stabilized ${Q}_{1}$-${Q}_{1}$ mixed finite element approximation. SIAM J. Numer. Anal. 39 (2001) 817-833. | Zbl 1008.76046

and ,[32] A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513-538. | Zbl 0632.73063

,[33] Stabilized hybrid finite element methods based on the combination of saddle point principles of elasticity problems. Math. Comput. 72 (2003) 1655-1673. | Zbl 1081.74046

,[34] Analysis of locally stabilized mixed finite element methods for the linear elasticity problem. Chinese J. Engrg Math. 12 (1995) 1-6. | Zbl 0924.73243

and ,