Classification: 65N15, 65N30, 74D05, 74M10, 74M15, 74S05, 74S20

Keywords: dynamic unilateral contact, friction, viscoelastic beam, error estimates, numerical simulations

@article{M2AN_2006__40_2_295_0, author = {Campo, Marco and Fern\'andez, Jos\'e R. and Stavroulakis, Georgios E. and Via\~no, Juan M.}, title = {Dynamic frictional contact of a viscoelastic beam}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {40}, number = {2}, year = {2006}, pages = {295-310}, doi = {10.1051/m2an:2006019}, zbl = {1137.74409}, mrnumber = {2241824}, language = {en}, url = {http://www.numdam.org/item/M2AN_2006__40_2_295_0} }

Campo, Marco; Fernández, José R.; Stavroulakis, Georgios E.; Viaño, Juan M. Dynamic frictional contact of a viscoelastic beam. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 2, pp. 295-310. doi : 10.1051/m2an:2006019. http://www.numdam.org/item/M2AN_2006__40_2_295_0/

[1] On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle. J. Elasticity 42 (1996) 1-30. | Zbl 0860.73028

, and ,[2] A membrane in adhesive contact. SIAM J. Appl. Math. 64 (2003) 152-169. | Zbl 1081.74034

, , , , , and ,[3] A thermoviscoelastic beam with a tip body. Comput. Mech. 33 (2004) 225-234. | Zbl 1067.74035

, and ,[4] Numerical analysis of dynamic thermoviscoelastic contact with damage of a rod. IMA J. Appl. Math. 70 (2005) 768-795. | Zbl pre05016022

, and ,[5] Duality methods for solving variational inequalities. Comput. Math. Appl. 7 (1981) 43-58. | Zbl 0456.65036

and ,[6] Numerical analysis and simulations of a quasistatic frictional contact problem with damage. J. Comput. Appl. Math. 192 (2006) 30-39. | Zbl 1088.74037

, and ,[7] A frictionless contact problem for elastic-viscoplastic materials with normal compliance and damage. Comput. Methods Appl. Mech. Eng. 191 (2002) 5007-5026. | Zbl 1042.74039

, , and ,[8] Inexact Uzawa algorithms for variational inequalities of the second kind. Comput. Methods Appl. Mech. Eng. 192 (2003) 1451-1462. | Zbl 1033.65045

and ,[9] The finite element method for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II (1991) 17-352. | Zbl 0875.65086

,[10] Inequalities in mechanics and physics. Springer-Verlag, Berlin (1976). | MR 521262 | Zbl 0331.35002

and ,[11] Numerical analysis and simulations of quasistatic frictional wear of a beam (submitted).

, and ,[12] Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33 (2004) 282-291. | Zbl 1067.74065

, and ,[13] Numerical methods for nonlinear variational problems. Springer, New York (1984). | MR 737005 | Zbl 0536.65054

,[14] Quasistatic contact problems in viscoelasticity and viscoplasticity. American Mathematical Society-Intl. Press (2002). | MR 1935666 | Zbl 1013.74001

and ,[15] Elastic beam in adhesive contact. Int. J. Solids Struct. 39 (2002) 1145-1164. | Zbl 1012.74050

, , and ,[16] Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26 (1988) 811-832. | Zbl 0662.73079

, and ,[17] Unilateral dynamic contact of two beams. Math. Comput. Model. 34 (2001) 365-384. | Zbl 0991.74046

, , and ,[18] Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin (2002). | MR 1902698 | Zbl 0996.74003

,[19] Inequality problems in mechanics and applications. Convex and nonconvex energy functions. Birkhäuser Boston, Boston (1985). | MR 896909 | Zbl 0579.73014

,[20] The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput. Mech. 34 (2004) 121-133. | Zbl 1138.74406

,[21] An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int. J. Numer. Meth. Eng. 54 (2002) 1683-1716. | Zbl 1098.74713

and ,[22] Quasistatic frictional contact and wear of a beam. Dyn. Contin. Discrete I. 8 (2000) 201-218. | Zbl 1015.74037

, and ,[23] Nonlinear boundary equation approach for inequality 2-D elastodynamics. Eng. Anal. Bound. Elem. 23 (1999) 487-501. | Zbl 0955.74076

and ,[24] Computational contact mechanics. John Wiley and Sons Ltd (2002).

,[25] A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law. Comput. Mech. 34 (2004) 1-14. | Zbl 1072.74061

, , and ,