Classification: 65J15, 65M15, 65M60

Keywords: modeling adaptivity, a posteriori error estimate, goal-oriented analysis, free-surface flows, dual problem, finite elements

@article{M2AN_2006__40_3_469_0, author = {Perotto, Simona}, title = {Adaptive modeling for free-surface flows}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {40}, number = {3}, year = {2006}, pages = {469-499}, doi = {10.1051/m2an:2006020}, zbl = {pre05122982}, mrnumber = {2245318}, language = {en}, url = {http://www.numdam.org/item/M2AN_2006__40_3_469_0} }

Perotto, Simona. Adaptive modeling for free-surface flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 3, pp. 469-499. doi : 10.1051/m2an:2006020. http://www.numdam.org/item/M2AN_2006__40_3_469_0/

[1] Hierarchic models for laminated plates and shells. Comput. Methods Appl. Mech. Engrg. 172 (1999) 79-107. | Zbl 0959.74061

, and ,[2] Mathematical and numerical modelling of shallow water flow. Comput. Mech. 11 (1993) 280-299. | Zbl 0771.76032

, , , and ,[3] Recent developments in the numerical simulation of shallow water equations I: boundary conditions. Appl. Numer. Math. 15 (1994) 175-200. | Zbl 0833.76008

, and ,[4] Hydrodynamical modelling and multidimensional approximation of estuarian river flows. Comput. Visual. Sci. 6 (2004) 39-46. | Zbl pre02132406

, and ,[5] Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9 (2001) 575-591.

and ,[6] Spurious reflection of elastic waves in nonuniform finite element grids. Comput. Methods Appl. Mech. Engrg. 16 (1978) 91-100. | Zbl 0384.73016

,[7] An optimal control approach to a posteriori error estimation in finite element methods, in Acta Numerica 2001, A. Iserles Ed., Cambridge University Press, Cambridge, UK (2001). | MR 2009692 | Zbl 1105.65349

and ,[8] Numerical methods in environmental fluid mechanics, in Engineering Applications of Computational Hydraulics, M.B. Abbott and J.A. Cunge Eds., Vol. II (1982).

, and ,[9] A posteriori control of modeling errors and discretizatin errors. Multiscale Model. Simul. 1 (2003) 221-238. | Zbl 1050.65100

and ,[10] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

,[11] Model error estimation in global functionals based on adjoint formulation, in International Conference on Adaptive Modeling and Simulation, ADMOS 2003, N.-E. Wiberg and P. Díez Eds., CIMNE, Barcelona (2003).

, , and ,[12] Finite element simulation with variable space dimension. The general framework (2006) (in preparation).

, and ,[13] Coupling of an interior Navier-Stokes problem with an exterior Oseen problem. J. Math. Fluid. Mech. 3 (2001) 1-17. | Zbl 0991.35061

and ,[14] Mathematical Modelling and Numerical Simulation of the Cardiovascular System, in Handbook of Numerical Analysis, Vol. XII, North-Holland, Amsterdam (2004) 3-127.

and ,[15] Multiscale modelling of the circolatory system: a preliminary analysis. Comput. Visual. Sci. 2 (1999) 75-83. | Zbl 1067.76624

, , and ,[16] Adjoint equations in CFD: duality, boundary conditions and solution behaviour, in 13th Computational Fluid Dynamics Conference Proceedings (1997) AIAA paper 97-1850.

and ,[17] Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11 (2002) 145-236. | Zbl 1105.65350

and ,[18] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag, New York (1996). | MR 1410987 | Zbl 0860.65075

and ,[19] Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM T. Math. Software 26 (2000) 19-45. | Zbl 1137.65330

and ,[20] Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput. Methods Appl. Mech. Engrg. 140 (1997) 39-58. | Zbl 0898.76058

,[21] Non-Homogeneous Boundary Value Problems and Applications. Volume I. Springer-Verlag, Berlin (1972). | MR 350177 | Zbl 0223.35039

and ,[22] Adjoint Equations and Analysis of Complex Systems. Kluwer Academic Publishers, Dordrecht (1995). | MR 1336381 | Zbl 0817.34002

,[23] Adjoint equations and perturbation algorithms in nonlinear problems. CRC Press (1996). | MR 1413046

, and ,[24]

and (2006) (in preparation).[25] A multiphysics strategy for free-surface flows, Domain Decomposition Methods in Science and Engineering, R. Kornhuber, R.H.W. Hoppe, J. Périaux, O. Pironneau, O. Widlund, J. Xu Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 40 (2004) 395-402. | Zbl pre02143570

, and ,[26] Model coupling techniques for free-surface flow problems. Part I. Nonlinear Analysis 63 (2005) 1885-1896.

, and ,[27] Estimation of modeling error in computational mechanics. J. Comput. Phys. 182 (2002) 469-515. | Zbl 1053.74049

and ,[28] Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys. 164 (2000) 22-47. | Zbl 0992.74072

and ,[29] Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6089-6124. | Zbl 1030.74051

and ,[30] Modeling error and adaptivity in nonlinear continuum mechanics. Comput. Method. Appl. M. 190 (2001) 6663-6684. | Zbl 1012.74081

, , and ,[31] Heterogeneous domain decomposition for compressible flows, in Proceedings of the ICFD Conference on Numerical Methods for Fluid Dynamics, M. Baines and W.K. Morton Eds., Oxford University Press, Oxford (1995) 113-128. | Zbl 0869.76067

and ,[32] Domain decomposition methods for partial differential equations. Oxford University Press Inc., New York (1999). | MR 1857663 | Zbl 0931.65118

and ,[33] Two-dimensional modelling of the river Rhine. J. Comput. Appl. Math. 145 (2002) 11-20. | Zbl 1072.86001

and ,[34] Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems. Comput. Methods Appl. Mech. Engrg. 176 (1999) 363-385. | Zbl 0954.74072

and ,[35] On the construction of computational models for shallow water equations. Rijkswaterstaat Communication 35 (1984).

,[36] Numerical Methods for Shallow-Water Flows. Kluwer Academic Press, Dordrecht (1998).

,[37] Linear and Nonlinear Waves. Wiley, New York (1974). | MR 483954 | Zbl 0373.76001

,[38] Numerical solution of the shallow-water equations. CWI Tract, 49, F.W. Wubs Ed., Amsterdam (1988). | MR 957529 | Zbl 0653.76011

,