Diffusion and propagation problems in some ramified domains with a fractal boundary
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 4, p. 623-652

This paper is devoted to some elliptic boundary value problems in a self-similar ramified domain of 2 with a fractal boundary. Both the Laplace and Helmholtz equations are studied. A generalized Neumann boundary condition is imposed on the fractal boundary. Sobolev spaces on this domain are studied. In particular, extension and trace results are obtained. These results enable the investigation of the variational formulation of the above mentioned boundary value problems. Next, for homogeneous Neumann conditions, the emphasis is placed on transparent boundary conditions, which allow the computation of the solutions in the subdomains obtained by stopping the geometric construction after a finite number of steps. The proposed methods and algorithms will be used numerically in forecoming papers.

DOI : https://doi.org/10.1051/m2an:2006027
Classification:  28A80,  35J05,  35J25,  65N
Keywords: domains with fractal boundaries, Helmholtz equation, Neumann boundary conditions, transparent boundary conditions
@article{M2AN_2006__40_4_623_0,
     author = {Achdou, Yves and Sabot, Christophe and Tchou, Nicoletta},
     title = {Diffusion and propagation problems in some ramified domains with a fractal boundary},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {4},
     year = {2006},
     pages = {623-652},
     doi = {10.1051/m2an:2006027},
     zbl = {1112.65115},
     mrnumber = {2274772},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2006__40_4_623_0}
}
Achdou, Yves; Sabot, Christophe; Tchou, Nicoletta. Diffusion and propagation problems in some ramified domains with a fractal boundary. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 4, pp. 623-652. doi : 10.1051/m2an:2006027. http://www.numdam.org/item/M2AN_2006__40_4_623_0/

[1] Y. Achdou, C. Sabot and N. Tchou, A multiscale numerical method for Poisson problems in some ramified domains with a fractal boundary. SIAM Multiscale Model. Simul. (2006) (accepted for publication). | MR 2257237 | Zbl pre05188174

[2] Y. Achdou, C. Sabot and N. Tchou, Transparent boundary conditions for Helmholtz equation in some ramified domains with a fractal boundary. J. Comput. Phys. (2006) (in press). | MR 2284320 | Zbl 1109.65096

[3] R.A. Adams, Sobolev spaces. Academic Press, New York-London (1975). Pure Appl. Math. 65. | MR 450957 | Zbl 0314.46030

[4] H. Brezis, Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications. Masson, Paris, 1983. | MR 697382 | Zbl 0511.46001

[5] M. Felici, Physique du transport diffusif de l'oxygène dans le poumon humain. Ph.D. thesis, École Polytechnique (2003).

[6] M. Gibbons, A. Raj and R.S. Strichartz, The finite element method on the Sierpinski gasket. Constr. Approx. 17 (2001) 561-588. | Zbl 0991.28007

[7] P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics 24, Pitman (Advanced Publishing Program), Boston, MA (1985). | MR 775683 | Zbl 0695.35060

[8] J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981) 713-747. | Zbl 0598.28011

[9] P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981) 71-88. | Zbl 0489.30017

[10] A. Jonsson and H. Wallin, Function spaces on subsets of 𝐑 n . Math. Rep. 2 (1984) xiv+221. | MR 820626 | Zbl 0875.46003

[11] J.B. Keller and D. Givoli, Exact nonreflecting boundary conditions. J. Comput. Phys. 82 (1989) 172-192. | Zbl 0671.65094

[12] M.R. Lancia, A transmission problem with a fractal interface. Z. Anal. Anwendungen 21 (2002) 113-133. | Zbl 1136.31310

[13] M.R. Lancia, Second order transmission problems across a fractal surface. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 191-213.

[14] B.B. Mandelbrodt, The fractal geometry of nature. Freeman and Co (1982). | MR 665254 | Zbl 0504.28001

[15] B. Mauroy, M. Filoche, J.S. Andrade and B. Sapoval, Interplay between flow distribution and geometry in an airway tree. Phys. Rev. Lett. 90 (2003).

[16] B. Mauroy, M. Filoche, E.R. Weibel and B. Sapoval, The optimal bronchial tree is dangerous. Nature 427 (2004) 633-636.

[17] V.G. Maz'Ja, Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). Translated from the Russian by T.O. Shaposhnikova. | Zbl 0692.46023

[18] U. Mosco, Energy functionals on certain fractal structures. J. Convex Anal. 9 (2002) 581-600. | Zbl 1018.28005

[19] U. Mosco and M.A. Vivaldi, Variational problems with fractal layers. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5) 27 (2003) 237-251.

[20] R. Oberlin, B. Street and R.S. Strichartz, Sampling on the Sierpinski gasket. Experiment. Math. 12 (2003) 403-418. | Zbl 1057.28004

[21] J. Rauch, Partial differential equations. Graduate Texts in Mathematics 128, Springer-Verlag, New York (1991). | MR 1223093 | Zbl 0742.35001

[22] C. Sabot, Spectral properties of self-similar lattices and iteration of rational maps. Mém. Soc. Math. Fr. (N.S.) 92 (2003) vi+104. | Numdam | MR 1976877 | Zbl 1036.82013

[23] C. Sabot, Electrical networks, symplectic reductions, and application to the renormalization map of self-similar lattices, in Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 72 (2004) 155-205. | Zbl 1066.37052

[24] B. Sapoval and T. Gobron, Vibration of strongly irregular fractal resonators. Phys. Rev. E 47 (1993).

[25] B. Sapoval, T. Gobron and A. Margolina, Vibration of fractal drums. Phys. Rev. Lett. 67 (1991).