We propose and analyze a semi lagrangian method for the convection-diffusion equation. Error estimates for both semi and fully discrete finite element approximations are obtained for convection dominated flows. The estimates are posed in terms of the projections constructed in [Chrysafinos and Walkington, SIAM J. Numer. Anal. 43 (2006) 2478-2499; Chrysafinos and Walkington, SIAM J. Numer. Anal. 44 (2006) 349-366] and the dependence of various constants upon the diffusion parameter is characterized. Error estimates independent of the diffusion constant are obtained when the velocity field is computed exactly.
Mots clés : convection diffusion, moving meshes, lagrangian formulation
@article{M2AN_2008__42_1_25_0, author = {Chrysafinos, Konstantinos and Walkington, Noel J.}, title = {Lagrangian and moving mesh methods for the convection diffusion equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {25--55}, publisher = {EDP-Sciences}, volume = {42}, number = {1}, year = {2008}, doi = {10.1051/m2an:2007053}, mrnumber = {2387421}, zbl = {1136.65089}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2007053/} }
TY - JOUR AU - Chrysafinos, Konstantinos AU - Walkington, Noel J. TI - Lagrangian and moving mesh methods for the convection diffusion equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 25 EP - 55 VL - 42 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2007053/ DO - 10.1051/m2an:2007053 LA - en ID - M2AN_2008__42_1_25_0 ER -
%0 Journal Article %A Chrysafinos, Konstantinos %A Walkington, Noel J. %T Lagrangian and moving mesh methods for the convection diffusion equation %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 25-55 %V 42 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2007053/ %R 10.1051/m2an:2007053 %G en %F M2AN_2008__42_1_25_0
Chrysafinos, Konstantinos; Walkington, Noel J. Lagrangian and moving mesh methods for the convection diffusion equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 1, pp. 25-55. doi : 10.1051/m2an:2007053. http://archive.numdam.org/articles/10.1051/m2an:2007053/
[1] Lagrangian finite element analysis applied to viscous free surface fluid flow. Int. J. Numer. Methods Fluids 7 (1987) 953-984. | Zbl
and ,[2] Analysis of some moving space-time finite element methods. SIAM J. Numer. Anal. 30 (1993) 1-18. | MR | Zbl
and ,[3] Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems. SIAM J. Numer. Anal. 39 (2002) 1954-1984 (electronic). | MR | Zbl
and ,[4] On the stability of the projection in . Math. Comp. 71 (2002) 147-156 (electronic). | MR | Zbl
, and ,[5] Design and application of a gradient-weighted moving finite element code. II. In two dimensions. SIAM J. Sci. Comput. 19 (1998) 766-798 (electronic). | MR | Zbl
and ,[6] Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for -stability of the -projection onto finite element spaces. Math. Comp. 71 (2002) 157-163 (electronic). | MR | Zbl
,[7] Error estimates for the discontinuous Galerkin methods for implicit parabolic equations. SIAM J. Numer. Anal. 43 (2006) 2478-2499. | MR | Zbl
and ,[8] Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349-366. | MR | Zbl
and ,[9] The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR | Zbl
,[10] An Eulerian-Lagrangian approach for incompressible fluids: local theory. J. Amer. Math. Soc. 14 (2001) 263-278 (electronic). | MR | Zbl
,[11] An Eulerian-Lagrangian approach to the Navier-Stokes equations. Comm. Math. Phys. 216 (2001) 663-686. | MR | Zbl
,[12] Computational Geometry. Springer (2000). | MR | Zbl
, , and ,[13] Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871-885. | MR | Zbl
, and ,[14] Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2002) 914-927 (electronic). | MR | Zbl
and ,[15] Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35 (1998) 909-940 (electronic). | MR | Zbl
and ,[16] Symmetric error estimates for moving mesh mixed methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2003) 2270-2291. | MR | Zbl
, , , and ,[17] Dynamic-mesh finite element method for Lagrangian computational fluid dynamics. Finite Elem. Anal. Des. 38 (2002) 965-982. | MR | Zbl
and ,[18] Lagrangian finite element method for free surface Navier-Stokes flow using fractional step methods. Int. J. Numer. Methods Fluids 13 (1991) 841-855. | Zbl
, and ,[19] Moving finite elements. II. SIAM J. Numer. Anal. 18 (1981) 1033-1057. | MR | Zbl
,[20] Moving finite elements. I. SIAM J. Numer. Anal. 18 (1981) 1019-1032. | MR | Zbl
and ,[21] Stability of the Lagrange-Galerkin method with nonexact integration. RAIRO Modél. Math. Anal. Numér. 22 (1988) 625-653. | Numdam | MR | Zbl
, and ,[22] A new and simple algorithm for quality 2-dimensional mesh generation, in Third Annual ACM-SIAM Symposium on Discrete Algorithms (1992) 83-92. | MR | Zbl
,[23] Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics 25. Springer-Verlag, Berlin (1997). | MR | Zbl
,Cité par Sources :