Sparse finite element approximation of high-dimensional transport-dominated diffusion problems
ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 5, pp. 777-819.

We develop the analysis of stabilized sparse tensor-product finite element methods for high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations of the form -a:u+b·u+cu=f(x), xΩ=(0,1) d d , where a d×d is a symmetric positive semidefinite matrix, using piecewise polynomials of degree p1. Our convergence analysis is based on new high-dimensional approximation results in sparse tensor-product spaces. We show that the error between the analytical solution u and its stabilized sparse finite element approximation u h on a partition of Ω of mesh size h=h L =2 -L satisfies the following bound in the streamline-diffusion norm |||·||| SD , provided u belongs to the space k+1 (Ω) of functions with square-integrable mixed (k+1)st derivatives:

|||u-u h ||| SD C p,t d 2 max{(2-p) + ,κ 0 d-1 ,κ 1 d }(|a|h L t +|b| 1 2 h L t+1 2 +c 1 2 h L t+1 )|u| t+1 (Ω) ,
where κ i =κ i (p,t,L), i=0,1, and 1tmin(k,p). We show, under various mild conditions relating L to p, L to d, or p to d, that in the case of elliptic transport-dominated diffusion problems κ 0 ,κ 1 (0,1), and hence for p2 the ‘error constant’ C p,t d 2 max{(2-p) + ,κ 0 d-1 ,κ 1 d } exhibits exponential decay as d; in the case of a general symmetric positive semidefinite matrix a, the error constant is shown to grow no faster than 𝒪(d 2 ). In any case, in the absence of assumptions that relate L, p and d, the error |||u-u h ||| SD is still bounded by κ * d-1 |log 2 h L | d-1 𝒪(|a|h L t +|b| 1 2 h L t+1 2 +c 1 2 h L t+1 ), where κ * (0,1) for all L,p,d2.

DOI : 10.1051/m2an:2008027
Classification : 65N30
Mots clés : high-dimensional Fokker-Planck equations, partial differential equations with nonnegative characteristic form, sparse finite element method
@article{M2AN_2008__42_5_777_0,
     author = {Schwab, Christoph and S\"uli, Endre and Todor, Radu Alexandru},
     title = {Sparse finite element approximation of high-dimensional transport-dominated diffusion problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {777--819},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {5},
     year = {2008},
     doi = {10.1051/m2an:2008027},
     mrnumber = {2454623},
     zbl = {1159.65094},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2008027/}
}
TY  - JOUR
AU  - Schwab, Christoph
AU  - Süli, Endre
AU  - Todor, Radu Alexandru
TI  - Sparse finite element approximation of high-dimensional transport-dominated diffusion problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2008
SP  - 777
EP  - 819
VL  - 42
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2008027/
DO  - 10.1051/m2an:2008027
LA  - en
ID  - M2AN_2008__42_5_777_0
ER  - 
%0 Journal Article
%A Schwab, Christoph
%A Süli, Endre
%A Todor, Radu Alexandru
%T Sparse finite element approximation of high-dimensional transport-dominated diffusion problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2008
%P 777-819
%V 42
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2008027/
%R 10.1051/m2an:2008027
%G en
%F M2AN_2008__42_5_777_0
Schwab, Christoph; Süli, Endre; Todor, Radu Alexandru. Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 5, pp. 777-819. doi : 10.1051/m2an:2008027. http://archive.numdam.org/articles/10.1051/m2an:2008027/

[1] K. Babenko, Approximation by trigonometric polynomials is a certain class of periodic functions of several variables. Soviet Math. Dokl. 1 (1960) 672-675. Russian original in Dokl. Akad. Nauk SSSR 132 (1960) 982-985. | MR | Zbl

[2] J.W. Barrett and E. Süli, Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506-546. | MR

[3] J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (2005) 939-983. | MR

[4] R.F. Bass, Diffusion and Elliptic Operators. Springer-Verlag, New York (1997). | MR | Zbl

[5] T.S. Blyth and E.F. Robertson, Further Linear Algebra. Springer-Verlag, London (2002). | MR | Zbl

[6] H.-J. Bungartz, Finite elements of higher order on sparse grids. Habilitation thesis, Informatik, TU München, Aachen: Shaker Verlag (1998).

[7] H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numer. 13 (2004) 1-123. | MR | Zbl

[8] R. Devore, S. Konyagin and V. Temlyakov, Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1-26. | MR | Zbl

[9] J. Dick, I.H. Sloan, X. Wang and H. Woźniakowski, Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103 (2006) 63-97. | MR | Zbl

[10] J. Elf, P. Lötstedt and P. Sjöberg, Problems of high dimension in molecular biology, in Proceedings of the 19th GAMM-Seminar Leipzig, W. Hackbusch Ed. (2003) 21-30.

[11] M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Foundations of Computational Mathematics 2005, L.-M. Pardo, A. Pinkus, E. Süli, M. Todd Eds., Cambridge University Press (2006) 106-161. | MR | Zbl

[12] V.H. Hoang and C. Schwab, High dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (2005) 168-194. | MR | Zbl

[13] L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Springer-Verlag, Berlin, Reprint of the 1983 edition (2005). | MR | Zbl

[14] P. Houston and E. Süli, Stabilized hp-finite element approximation of partial differential equations with non-negative characteristic form. Computing 66 (2001) 99-119. | Zbl

[15] P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133-2163. | MR | Zbl

[16] B. Lapeyre, É. Pardoux and R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations, Oxford Texts in Applied and Engineering Mathematics. Oxford University Press, Oxford (2003). | MR | Zbl

[17] P. Laurençot and S. Mischler, The continuous coagulation fragmentation equations with diffusion. Arch. Rational Mech. Anal. 162 (2002) 45-99. | MR | Zbl

[18] C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with W 1,1 velocities and applications. Annali di Matematica 183 (2004) 97-130. | MR

[19] E. Novak and K. Ritter, The curse of dimension and a universal method for numerical integration, in Multivariate Approximation and Splines, G. Nürnberger, J. Schmidt and G. Walz Eds., International Series in Numerical Mathematics, Birkhäuser, Basel (1998) 177-188. | MR | Zbl

[20] O.A. Oleĭnik and E.V. Radkevič, Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society, Providence, RI (1973). | MR

[21] H.-C. Öttinger, Stochastic Processes in Polymeric Fluids. Springer-Verlag, New York (1996). | MR | Zbl

[22] H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics 24. Springer-Verlag, New York (1996). | MR | Zbl

[23] C. Schwab, p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Numerical Methods and Scientific Computation. Clarendon Press, Oxford (1998). | MR | Zbl

[24] S. Smolyak, Quadrature and interpolation formulas for products of certain classes of functions. Soviet Math. Dokl. 4 (1963) 240-243. Russian original in Dokl. Akad. Nauk SSSR 148 (1963) 1042-1045. | MR | Zbl

[25] E. Süli, Finite element approximation of high-dimensional transport-dominated diffusion problems, in Foundations of Computational Mathematics 2005, L.-M. Pardo, A. Pinkus, E. Süli, M. Todd Eds., Cambridge University Press (2006) 343-370. Available at: http://web.comlab.ox.ac.uk/oucl/publications/natr/index.html | MR | Zbl

[26] E. Süli, Finite element algorithms for transport-diffusion problems: stability, adaptivity, tractability, in Invited Lecture at the International Congress of Mathematicians, Madrid, 22-30 August 2006. Available at: http://web.comlab.ox.ac.uk/work/endre.suli/Suli-ICM2006.pdf | MR | Zbl

[27] V. Temlyakov, Approximation of functions with bounded mixed derivative, in Proc. Steklov Inst. of Math. 178, American Mathematical Society, Providence, RI (1989). | MR | Zbl

[28] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992). | Zbl

[29] T. Von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-128. | Numdam | MR | Zbl

[30] G. Wasilkowski and H. Woźniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity 11 (1995) 1-56. | MR | Zbl

[31] C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, W. Hackbusch Ed., Notes on Numerical Fluid Mechanics 31, Vieweg, Braunschweig/Wiesbaden (1991). | MR | Zbl

[32] G.W. Zumbusch, A sparse grid PDE solver, in Advances in Software Tools for Scientific Computing, H.P. Langtangen, A.M. Bruaset and E. Quak Eds., Lecture Notes in Computational Science and Engineering 10, Springer, Berlin (Proceedings SciTools '98) (2000) 133-177. | Zbl

Cité par Sources :