We develop the analysis of stabilized sparse tensor-product finite element methods for high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations of the form , , where is a symmetric positive semidefinite matrix, using piecewise polynomials of degree . Our convergence analysis is based on new high-dimensional approximation results in sparse tensor-product spaces. We show that the error between the analytical solution and its stabilized sparse finite element approximation on a partition of of mesh size satisfies the following bound in the streamline-diffusion norm , provided belongs to the space of functions with square-integrable mixed st derivatives:
Mots-clés : high-dimensional Fokker-Planck equations, partial differential equations with nonnegative characteristic form, sparse finite element method
@article{M2AN_2008__42_5_777_0, author = {Schwab, Christoph and S\"uli, Endre and Todor, Radu Alexandru}, title = {Sparse finite element approximation of high-dimensional transport-dominated diffusion problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {777--819}, publisher = {EDP-Sciences}, volume = {42}, number = {5}, year = {2008}, doi = {10.1051/m2an:2008027}, mrnumber = {2454623}, zbl = {1159.65094}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008027/} }
TY - JOUR AU - Schwab, Christoph AU - Süli, Endre AU - Todor, Radu Alexandru TI - Sparse finite element approximation of high-dimensional transport-dominated diffusion problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 777 EP - 819 VL - 42 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008027/ DO - 10.1051/m2an:2008027 LA - en ID - M2AN_2008__42_5_777_0 ER -
%0 Journal Article %A Schwab, Christoph %A Süli, Endre %A Todor, Radu Alexandru %T Sparse finite element approximation of high-dimensional transport-dominated diffusion problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 777-819 %V 42 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008027/ %R 10.1051/m2an:2008027 %G en %F M2AN_2008__42_5_777_0
Schwab, Christoph; Süli, Endre; Todor, Radu Alexandru. Sparse finite element approximation of high-dimensional transport-dominated diffusion problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 5, pp. 777-819. doi : 10.1051/m2an:2008027. http://archive.numdam.org/articles/10.1051/m2an:2008027/
[1] Approximation by trigonometric polynomials is a certain class of periodic functions of several variables. Soviet Math. Dokl. 1 (1960) 672-675. Russian original in Dokl. Akad. Nauk SSSR 132 (1960) 982-985. | MR | Zbl
,[2] Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506-546. | MR
and ,[3] Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (2005) 939-983. | MR
, and ,[4] Diffusion and Elliptic Operators. Springer-Verlag, New York (1997). | MR | Zbl
,[5] Further Linear Algebra. Springer-Verlag, London (2002). | MR | Zbl
and ,[6] Finite elements of higher order on sparse grids. Habilitation thesis, Informatik, TU München, Aachen: Shaker Verlag (1998).
,[7] Sparse grids. Acta Numer. 13 (2004) 1-123. | MR | Zbl
and ,[8] Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1-26. | MR | Zbl
, and ,[9] Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103 (2006) 63-97. | MR | Zbl
, , and ,[10] Problems of high dimension in molecular biology, in Proceedings of the 19th GAMM-Seminar Leipzig, W. Hackbusch Ed. (2003) 21-30.
, and ,[11] Sparse grids and related approximation schemes for higher dimensional problems, in Foundations of Computational Mathematics 2005, L.-M. Pardo, A. Pinkus, E. Süli, M. Todd Eds., Cambridge University Press (2006) 106-161. | MR | Zbl
,[12] High dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (2005) 168-194. | MR | Zbl
and ,[13] The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Springer-Verlag, Berlin, Reprint of the 1983 edition (2005). | MR | Zbl
,[14] Stabilized -finite element approximation of partial differential equations with non-negative characteristic form. Computing 66 (2001) 99-119. | Zbl
and ,[15] Discontinuous -finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133-2163. | MR | Zbl
, and ,[16] Introduction to Monte-Carlo Methods for Transport and Diffusion Equations, Oxford Texts in Applied and Engineering Mathematics. Oxford University Press, Oxford (2003). | MR | Zbl
, and ,[17] The continuous coagulation fragmentation equations with diffusion. Arch. Rational Mech. Anal. 162 (2002) 45-99. | MR | Zbl
and ,[18] Renormalized solutions of some transport equations with velocities and applications. Annali di Matematica 183 (2004) 97-130. | MR
and ,[19] The curse of dimension and a universal method for numerical integration, in Multivariate Approximation and Splines, G. Nürnberger, J. Schmidt and G. Walz Eds., International Series in Numerical Mathematics, Birkhäuser, Basel (1998) 177-188. | MR | Zbl
and ,[20] Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society, Providence, RI (1973). | MR
and ,[21] Stochastic Processes in Polymeric Fluids. Springer-Verlag, New York (1996). | MR | Zbl
,[22] Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics 24. Springer-Verlag, New York (1996). | MR | Zbl
, and ,[23] - and -Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Numerical Methods and Scientific Computation. Clarendon Press, Oxford (1998). | MR | Zbl
,[24] Quadrature and interpolation formulas for products of certain classes of functions. Soviet Math. Dokl. 4 (1963) 240-243. Russian original in Dokl. Akad. Nauk SSSR 148 (1963) 1042-1045. | MR | Zbl
,[25] Finite element approximation of high-dimensional transport-dominated diffusion problems, in Foundations of Computational Mathematics 2005, L.-M. Pardo, A. Pinkus, E. Süli, M. Todd Eds., Cambridge University Press (2006) 343-370. Available at: http://web.comlab.ox.ac.uk/oucl/publications/natr/index.html | MR | Zbl
,[26] Finite element algorithms for transport-diffusion problems: stability, adaptivity, tractability, in Invited Lecture at the International Congress of Mathematicians, Madrid, 22-30 August 2006. Available at: http://web.comlab.ox.ac.uk/work/endre.suli/Suli-ICM2006.pdf | MR | Zbl
,[27] Approximation of functions with bounded mixed derivative, in Proc. Steklov Inst. of Math. 178, American Mathematical Society, Providence, RI (1989). | MR | Zbl
,[28] Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992). | Zbl
,[29] Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-128. | Numdam | MR | Zbl
and ,[30] Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity 11 (1995) 1-56. | MR | Zbl
and ,[31] Sparse grids, in Parallel Algorithms for Partial Differential Equations, W. Hackbusch Ed., Notes on Numerical Fluid Mechanics 31, Vieweg, Braunschweig/Wiesbaden (1991). | MR | Zbl
,[32] A sparse grid PDE solver, in Advances in Software Tools for Scientific Computing, H.P. Langtangen, A.M. Bruaset and E. Quak Eds., Lecture Notes in Computational Science and Engineering 10, Springer, Berlin (Proceedings SciTools '98) (2000) 133-177. | Zbl
,Cité par Sources :