An analysis of the effect of ghost force oscillation on quasicontinuum error
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 43 (2009) no. 3, p. 591-604

The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces on the displacement nearly cancels and has a small effect on the error away from the interface. We give optimal order error estimates that show that the quasicontinuum displacement converges to the atomistic displacement at the rate O(h) in the discrete and w 1,1 norms where h is the interatomic spacing. We also give a proof that the error in the displacement gradient decays away from the interface to O(h) at distance O(h|logh|) in the atomistic region and distance O(h) in the continuum region. Our work gives an explicit and simplified form for the decay of the effect of the atomistic to continuum coupling error in terms of a general underlying interatomic potential and gives the estimates described above in the discrete and w 1,p norms.

DOI : https://doi.org/10.1051/m2an/2009007
Classification:  65Z05,  70C20
Keywords: quasicontinuum, atomistic to continuum, ghost force
@article{M2AN_2009__43_3_591_0,
     author = {Dobson, Matthew and Luskin, Mitchell},
     title = {An analysis of the effect of ghost force oscillation on quasicontinuum error},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {3},
     year = {2009},
     pages = {591-604},
     doi = {10.1051/m2an/2009007},
     zbl = {1165.81414},
     mrnumber = {2536250},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2009__43_3_591_0}
}
Dobson, Matthew; Luskin, Mitchell. An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 43 (2009) no. 3, pp. 591-604. doi : 10.1051/m2an/2009007. http://www.numdam.org/item/M2AN_2009__43_3_591_0/

[1] M. Arndt and M. Luskin, Goal-oriented atomistic-continuum adaptivity for the quasicontinuum approximation. Int. J. Mult. Comp. Eng. 5 (2007) 407-415.

[2] M. Arndt and M. Luskin, Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of a Frenkel-Kontorova model. Multiscale Model. Simul. 7 (2008) 147-170. | MR 2399541 | Zbl 1160.82313

[3] M. Arndt and M. Luskin, Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model. Comp. Meth. App. Mech. Eng. 197 (2008) 4298-4306. | MR 2463663

[4] S. Badia, M.L. Parks, P.B. Bochev, M. Gunzburger and R.B. Lehoucq, On atomistic-to-continuum (AtC) coupling by blending. Multiscale Model. Simul. 7 (2008) 381-406. | MR 2399551 | Zbl 1160.65338

[5] X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM: M2AN 39 (2005) 797-826. | Numdam | MR 2165680 | Zbl pre02213940

[6] W. Curtin and R. Miller, Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sc. 11 (2003) R33-R68.

[7] M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum method. ESAIM: M2AN 42 (2008) 113-139. | Numdam | MR 2387424 | Zbl 1140.74006

[8] W. E and P. Ming. Analysis of the local quasicontinuum method, in Frontiers and Prospects of Contemporary Applied Mathematics, T. Li and P. Zhang Eds., Higher Education Press, World Scientific (2005) 18-32. | MR 2249291 | Zbl pre05050158

[9] W. E, J. Lu and J. Yang, Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115.

[10] J. Knap and M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899-1923. | Zbl 1002.74008

[11] P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657-675 (electronic). | MR 1954960 | Zbl 1010.74003

[12] P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material. SIAM J. Numer. Anal. 45 (2007) 313-332. | MR 2285857 | Zbl pre05246529

[13] R. Miller and E. Tadmor, The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9 (2002) 203-239.

[14] R. Miller, L. Shilkrot and W. Curtin. A coupled atomistic and discrete dislocation plasticity simulation of nano-indentation into single crystal thin films. Acta Mater. 52 (2003) 271-284.

[15] P. Ming and J.Z. Yang, Analysis of a one-dimensional nonlocal quasicontinuum method. Preprint. | Zbl 1177.74169

[16] J.T. Oden, S. Prudhomme, A. Romkes and P. Bauman, Multi-scale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comput. 28 (2006) 2359-2389. | MR 2272265 | Zbl 1126.74006

[17] C. Ortner and E. Süli, A-posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Research Report NA-06/13, Oxford University Computing Laboratory (2006).

[18] C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension. ESAIM: M2AN 42 (2008) 57-91. | Numdam | MR 2387422 | Zbl 1139.74004

[19] M.L. Parks, P.B. Bochev and R.B. Lehoucq, Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model. Simul. 7 (2008) 362-380. | MR 2399550 | Zbl 1160.65343

[20] S. Prudhomme, P.T. Bauman and J.T. Oden, Error control for molecular statics problems. Int. J. Mult. Comp. Eng. 4 (2006) 647-662.

[21] D. Rodney and R. Phillips, Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82 (1999) 1704-1707.

[22] V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611-642. | MR 1675219 | Zbl 0982.74071

[23] T. Shimokawa, J. Mortensen, J. Schiotz and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104.

[24] G. Strang and G. Fix, Analysis of the Finite Elements Method. Prentice Hall (1973). | MR 443377 | Zbl 0356.65096

[25] E. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529-1563.