We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical hamiltonian systems.
Mots clés : B-series, hamiltonian systems, energy-preserving integrators, Runge-Kutta methods
@article{M2AN_2009__43_4_645_0, author = {Celledoni, Elena and McLachlan, Robert I. and McLaren, David I. and Owren, Brynjulf and G. Reinout W. Quispel and Wright, William M.}, title = {Energy-preserving {Runge-Kutta} methods}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {645--649}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/m2an/2009020}, mrnumber = {2542869}, zbl = {1169.65348}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2009020/} }
TY - JOUR AU - Celledoni, Elena AU - McLachlan, Robert I. AU - McLaren, David I. AU - Owren, Brynjulf AU - G. Reinout W. Quispel AU - Wright, William M. TI - Energy-preserving Runge-Kutta methods JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 645 EP - 649 VL - 43 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2009020/ DO - 10.1051/m2an/2009020 LA - en ID - M2AN_2009__43_4_645_0 ER -
%0 Journal Article %A Celledoni, Elena %A McLachlan, Robert I. %A McLaren, David I. %A Owren, Brynjulf %A G. Reinout W. Quispel %A Wright, William M. %T Energy-preserving Runge-Kutta methods %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 645-649 %V 43 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2009020/ %R 10.1051/m2an/2009020 %G en %F M2AN_2009__43_4_645_0
Celledoni, Elena; McLachlan, Robert I.; McLaren, David I.; Owren, Brynjulf; G. Reinout W. Quispel; Wright, William M. Energy-preserving Runge-Kutta methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 4, pp. 645-649. doi : 10.1051/m2an/2009020. http://archive.numdam.org/articles/10.1051/m2an/2009020/
[1] Numerical solution of isospectral flows. Math. Comput. 66 (1997) 1461-1486. | MR | Zbl
, and ,[2] Energy-preserving integrators and the structure of B-series. Preprint.
, , and ,[3] An algebraic approach to invariant preserving integrators: The case of quadratic and Hamiltonian invariants. Numer. Math. 103 (2006) 575-590. | MR | Zbl
, and ,[4] Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7 (1987) 1-13. | MR | Zbl
,[5] Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44 (2004) 699-709. | MR | Zbl
, and ,[6] Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2nd Edition (2006). | MR | Zbl
, and ,[7] Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math. 125 (2000) 69-81. | MR | Zbl
and ,[8] Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal. 35 (1998) 586-599. | MR | Zbl
, and ,[9] Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357 (1999) 1021-1046. | MR | Zbl
, and ,[10] A new class of energy-preserving numerical integration methods. J. Phys. A 41 (2008) 045206. | MR | Zbl
and ,[11] A search for improved numerical integration methods using rooted trees and splitting. MSc Thesis, La Trobe University, Australia (2002).
,[12] Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. 12B (1986) 1287-1296. | MR | Zbl
,Cité par Sources :