A Mimetic Discretization method for the linear elasticity problem in mixed weakly symmetric form is developed. The scheme is shown to converge linearly in the mesh size, independently of the incompressibility parameter λ, provided the discrete scalar product satisfies two given conditions. Finally, a family of algebraic scalar products which respect the above conditions is detailed.
Mots clés : mimetic finite difference methods, linear elasticity, finite element methods, mixed formulation
@article{M2AN_2010__44_2_231_0, author = {Beir\~ao Da Veiga, Lourenco}, title = {A mimetic discretization method for linear elasticity}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {231--250}, publisher = {EDP-Sciences}, volume = {44}, number = {2}, year = {2010}, doi = {10.1051/m2an/2010001}, mrnumber = {2655949}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010001/} }
TY - JOUR AU - Beirão Da Veiga, Lourenco TI - A mimetic discretization method for linear elasticity JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 231 EP - 250 VL - 44 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010001/ DO - 10.1051/m2an/2010001 LA - en ID - M2AN_2010__44_2_231_0 ER -
%0 Journal Article %A Beirão Da Veiga, Lourenco %T A mimetic discretization method for linear elasticity %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 231-250 %V 44 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010001/ %R 10.1051/m2an/2010001 %G en %F M2AN_2010__44_2_231_0
Beirão Da Veiga, Lourenco. A mimetic discretization method for linear elasticity. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 231-250. doi : 10.1051/m2an/2010001. http://archive.numdam.org/articles/10.1051/m2an/2010001/
[1] Lectures on Elliptic Boundary Value Problems. Van Nostrand, USA (1965). | Zbl
,[2] Equilibrium finite elements for the linear elastic problem. Numer. Math. 33 (1979) 367-383. | Zbl
and ,[3] PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347-367. | Zbl
, and ,[4] Differential complexes and stability of finite element methods II: the elasticity complex, in Compatible Spatial Discretizations, D. Arnold, P. Botchev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer-Verlag (2005) 47-67. | Zbl
, and ,[5] Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76 (2007) 1699-1723. | Zbl
, and ,[6] A residual based error estimator for the Mimetic Finite Difference method. Numer. Math. 108 (2008) 387-406. | Zbl
,[7] An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems with general diffusion tensors. Int. J. Num. Meth. Engrg. 76 (2008) 1696-1723. | Zbl
and ,[8] A higher-order formulation of the Mimetic Finite Difference method. SIAM J. Sci. Comput. 31 (2008) 732-760. | Zbl
and ,[9] Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325-356. | Zbl
, and ,[10] A mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215-7232. | Zbl
, , and ,[11] Convergence of mimetic finite difference discretizations of the diffusion equation. J. Numer. Math. 9 (2001) 253-284. | Zbl
, , and ,[12] Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43 (2005) 1728-1749. | Zbl
, , , and ,[13] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, USA (1991). | Zbl
and ,[14] Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | Zbl
, and ,[15] Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal. 8 (2009) 95-121. | Zbl
, and ,[16] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872-1896. | Zbl
, and ,[17] A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533-1553. | Zbl
, and ,[18] Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275-298. | Zbl
, and ,[19] A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comp. Meth. Appl. Mech. Engrg. 196 (2007) 3682-3692. | Zbl
, , and ,[20] Flux recontruction and pressure post-processing in mimetic finite difference methods. Comput. Meth. Appl. Mech. Engrg. 197 (2008) 933-945. | Zbl
and ,[21] Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications 20. Amsterdam, North Holland (1988). | Zbl
,[22] Stress function approach, in World Congress on the Finite Element Method in Structural Mechanics, Bornemouth (1975).
,[23] High-order mimetic finite difference method for the diffusion problems on polygonal meshes. J. Comput. Phys. 227 (2008) 8841-8854. | Zbl
and ,[24] The numerical solution of diffusion problems in strongly heterogeneus non-isotropic materials. J. Comput. Phys. 132 (1997) 130-148. | Zbl
, and ,[25] Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6 (2002) 333-352. | Zbl
, , and ,[26] The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8 (2005) 301-324. | Zbl
, and ,[27] Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199 (2004) 589-597. | Zbl
, and ,[28] The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys. 211 (2006) 473-491. | Zbl
, and ,[29] A local support-operators diffusion discretization scheme for hexahedral meshes. J. Comput. Phys. 170 (2001) 338-372. | Zbl
, and ,Cité par Sources :