Beirão Da Veiga, Lourenco
A mimetic discretization method for linear elasticity
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) no. 2 , p. 231-250
Zbl pre05692905 | MR 2655949
doi : 10.1051/m2an/2010001
URL stable : http://www.numdam.org/item?id=M2AN_2010__44_2_231_0

Classification:  65N30,  65N12,  74B05
A Mimetic Discretization method for the linear elasticity problem in mixed weakly symmetric form is developed. The scheme is shown to converge linearly in the mesh size, independently of the incompressibility parameter λ, provided the discrete scalar product satisfies two given conditions. Finally, a family of algebraic scalar products which respect the above conditions is detailed.

Bibliographie

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand, USA (1965). Zbl 0142.37401

[2] M. Amara and J.M. Thomas, Equilibrium finite elements for the linear elastic problem. Numer. Math. 33 (1979) 367-383. Zbl 0401.73079

[3] D.N. Arnold, F. Brezzi and J. Douglas Jr., PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347-367. Zbl 0633.73074

[4] D.N. Arnold, R.S. Falk and R. Winther, Differential complexes and stability of finite element methods II: the elasticity complex, in Compatible Spatial Discretizations, D. Arnold, P. Botchev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer-Verlag (2005) 47-67. Zbl 1119.65399

[5] D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76 (2007) 1699-1723. Zbl 1118.74046

[6] L. Beirão Da Veiga, A residual based error estimator for the Mimetic Finite Difference method. Numer. Math. 108 (2008) 387-406. Zbl 1144.65067

[7] L. Beirão Da Veiga and G. Manzini, An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems with general diffusion tensors. Int. J. Num. Meth. Engrg. 76 (2008) 1696-1723. Zbl 1195.65146

[8] L. Beirão Da Veiga and G. Manzini, A higher-order formulation of the Mimetic Finite Difference method. SIAM J. Sci. Comput. 31 (2008) 732-760. Zbl 1185.65201

[9] L. Beirão Da Veiga, K. Lipnikov and G. Manzini, Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325-356. Zbl 1183.65132

[10] L. Beirão Da Veiga, V. Gyrya, K. Lipnikov and G. Manzini, A mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215-7232. Zbl 1172.76032

[11] M. Berndt, K. Lipnikov, J.D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. J. Numer. Math. 9 (2001) 253-284. Zbl 1014.65114

[12] M. Berndt, K. Lipnikov, M. Shashkov, M.F. Wheeler and I. Yotov, Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43 (2005) 1728-1749. Zbl 1096.76030

[13] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, USA (1991). Zbl 0788.73002

[14] F. Brezzi, J. Douglas Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. Zbl 0599.65072

[15] F. Brezzi, D. Boffi and M. Fortin, Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal. 8 (2009) 95-121. Zbl 1154.74041

[16] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872-1896. Zbl 1108.65102

[17] F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533-1553. Zbl 1083.65099

[18] F. Brezzi, K. Lipnikov and V. Simoncini, Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275-298. Zbl 1094.65111

[19] F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comp. Meth. Appl. Mech. Engrg. 196 (2007) 3682-3692. Zbl 1173.76370

[20] A. Cangiani and G. Manzini, Flux recontruction and pressure post-processing in mimetic finite difference methods. Comput. Meth. Appl. Mech. Engrg. 197 (2008) 933-945. Zbl 1169.76404

[21] P.G. Ciarlet, Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications 20. Amsterdam, North Holland (1988). Zbl 0648.73014

[22] B.X. Fraejis De Vebeuke, Stress function approach, in World Congress on the Finite Element Method in Structural Mechanics, Bornemouth (1975).

[23] V. Gryrya and K. Lipnikov, High-order mimetic finite difference method for the diffusion problems on polygonal meshes. J. Comput. Phys. 227 (2008) 8841-8854. Zbl 1152.65101

[24] J. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneus non-isotropic materials. J. Comput. Phys. 132 (1997) 130-148. Zbl 0881.65093

[25] J. Hyman, J. Morel, M. Shashkov and S. Steinberg, Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6 (2002) 333-352. Zbl 1023.76033

[26] Y. Kuznetsov, K. Lipnikov and M. Shashkov, The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8 (2005) 301-324. Zbl 1088.76046

[27] K. Lipnikov, J. Morel and M. Shashkov, Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199 (2004) 589-597. Zbl 1057.65071

[28] K. Lipnikov, M. Shashkov and D. Svyatskiy, The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys. 211 (2006) 473-491. Zbl 1120.65332

[29] J. Morel, M. Hall and M. Shaskov, A local support-operators diffusion discretization scheme for hexahedral meshes. J. Comput. Phys. 170 (2001) 338-372. Zbl 0983.65096