A mimetic discretization method for linear elasticity
ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 231-250.

A Mimetic Discretization method for the linear elasticity problem in mixed weakly symmetric form is developed. The scheme is shown to converge linearly in the mesh size, independently of the incompressibility parameter λ, provided the discrete scalar product satisfies two given conditions. Finally, a family of algebraic scalar products which respect the above conditions is detailed.

DOI : 10.1051/m2an/2010001
Classification : 65N30, 65N12, 74B05
Mots clés : mimetic finite difference methods, linear elasticity, finite element methods, mixed formulation
@article{M2AN_2010__44_2_231_0,
     author = {Beir\~ao Da Veiga, Lourenco},
     title = {A mimetic discretization method for linear elasticity},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {231--250},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {2},
     year = {2010},
     doi = {10.1051/m2an/2010001},
     mrnumber = {2655949},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010001/}
}
TY  - JOUR
AU  - Beirão Da Veiga, Lourenco
TI  - A mimetic discretization method for linear elasticity
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 231
EP  - 250
VL  - 44
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010001/
DO  - 10.1051/m2an/2010001
LA  - en
ID  - M2AN_2010__44_2_231_0
ER  - 
%0 Journal Article
%A Beirão Da Veiga, Lourenco
%T A mimetic discretization method for linear elasticity
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 231-250
%V 44
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010001/
%R 10.1051/m2an/2010001
%G en
%F M2AN_2010__44_2_231_0
Beirão Da Veiga, Lourenco. A mimetic discretization method for linear elasticity. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 2, pp. 231-250. doi : 10.1051/m2an/2010001. http://archive.numdam.org/articles/10.1051/m2an/2010001/

[1] S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand, USA (1965). | Zbl

[2] M. Amara and J.M. Thomas, Equilibrium finite elements for the linear elastic problem. Numer. Math. 33 (1979) 367-383. | Zbl

[3] D.N. Arnold, F. Brezzi and J. Douglas Jr., PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347-367. | Zbl

[4] D.N. Arnold, R.S. Falk and R. Winther, Differential complexes and stability of finite element methods II: the elasticity complex, in Compatible Spatial Discretizations, D. Arnold, P. Botchev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer-Verlag (2005) 47-67. | Zbl

[5] D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76 (2007) 1699-1723. | Zbl

[6] L. Beirão Da Veiga, A residual based error estimator for the Mimetic Finite Difference method. Numer. Math. 108 (2008) 387-406. | Zbl

[7] L. Beirão Da Veiga and G. Manzini, An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems with general diffusion tensors. Int. J. Num. Meth. Engrg. 76 (2008) 1696-1723. | Zbl

[8] L. Beirão Da Veiga and G. Manzini, A higher-order formulation of the Mimetic Finite Difference method. SIAM J. Sci. Comput. 31 (2008) 732-760. | Zbl

[9] L. Beirão Da Veiga, K. Lipnikov and G. Manzini, Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325-356. | Zbl

[10] L. Beirão Da Veiga, V. Gyrya, K. Lipnikov and G. Manzini, A mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215-7232. | Zbl

[11] M. Berndt, K. Lipnikov, J.D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. J. Numer. Math. 9 (2001) 253-284. | Zbl

[12] M. Berndt, K. Lipnikov, M. Shashkov, M.F. Wheeler and I. Yotov, Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43 (2005) 1728-1749. | Zbl

[13] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, USA (1991). | Zbl

[14] F. Brezzi, J. Douglas Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | Zbl

[15] F. Brezzi, D. Boffi and M. Fortin, Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal. 8 (2009) 95-121. | Zbl

[16] F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872-1896. | Zbl

[17] F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533-1553. | Zbl

[18] F. Brezzi, K. Lipnikov and V. Simoncini, Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275-298. | Zbl

[19] F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comp. Meth. Appl. Mech. Engrg. 196 (2007) 3682-3692. | Zbl

[20] A. Cangiani and G. Manzini, Flux recontruction and pressure post-processing in mimetic finite difference methods. Comput. Meth. Appl. Mech. Engrg. 197 (2008) 933-945. | Zbl

[21] P.G. Ciarlet, Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications 20. Amsterdam, North Holland (1988). | Zbl

[22] B.X. Fraejis De Vebeuke, Stress function approach, in World Congress on the Finite Element Method in Structural Mechanics, Bornemouth (1975).

[23] V. Gryrya and K. Lipnikov, High-order mimetic finite difference method for the diffusion problems on polygonal meshes. J. Comput. Phys. 227 (2008) 8841-8854. | Zbl

[24] J. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneus non-isotropic materials. J. Comput. Phys. 132 (1997) 130-148. | Zbl

[25] J. Hyman, J. Morel, M. Shashkov and S. Steinberg, Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6 (2002) 333-352. | Zbl

[26] Y. Kuznetsov, K. Lipnikov and M. Shashkov, The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8 (2005) 301-324. | Zbl

[27] K. Lipnikov, J. Morel and M. Shashkov, Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199 (2004) 589-597. | Zbl

[28] K. Lipnikov, M. Shashkov and D. Svyatskiy, The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys. 211 (2006) 473-491. | Zbl

[29] J. Morel, M. Hall and M. Shaskov, A local support-operators diffusion discretization scheme for hexahedral meshes. J. Comput. Phys. 170 (2001) 338-372. | Zbl

Cité par Sources :