Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) no. 2, pp. 309-334.

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents and in the regions where the upstroke or the late recovery of the action potential is occurring. In this paper we investigate a domain decomposition approach for this problem, where the entire computational domain is suitably split and the two models are solved in different subdomains. Since the mathematical features of the two problems are rather different, the heterogeneous coupling is non trivial. Here we investigate appropriate interface matching conditions for the coupling on non overlapping domains. Moreover, we pursue an Optimized Schwarz approach for the numerical solution of the heterogeneous problem. Convergence of the iterative method is analyzed by means of a Fourier analysis. We investigate the parameters to be selected in the matching radiation-type conditions to accelerate the convergence. Numerical results both in two and three dimensions illustrate the effectiveness of the coupling strategy.

DOI : https://doi.org/10.1051/m2an/2010057
Classification : 65M55,  65N30,  92-08
Mots clés : computational electrocardiology, optimized Schwarz methods, heterogeneous models
     author = {Gerardo-Giorda, Luca and Perego, Mauro and Veneziani, Alessandro},
     title = {Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {309--334},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {2},
     year = {2011},
     doi = {10.1051/m2an/2010057},
     zbl = {1274.92022},
     mrnumber = {2804641},
     language = {en},
     url = {archive.numdam.org/item/M2AN_2011__45_2_309_0/}
Gerardo-Giorda, Luca; Perego, Mauro; Veneziani, Alessandro. Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) no. 2, pp. 309-334. doi : 10.1051/m2an/2010057. http://archive.numdam.org/item/M2AN_2011__45_2_309_0/

[1] A. Alonso-Rodriguez and L. Gerardo-Giorda, New non-overlapping domain decomposition methods for the time-harmonic Maxwell system. SIAM J. Sci. Comp. 28 (2006) 102-122. | MR 2219289 | Zbl 1106.78014

[2] M. Bendahmane and K.H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1 (2006) 185-218. | MR 2219282 | Zbl 1179.35162

[3] Y. Bourgault, Y. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal.: Real World Appl. 10 (2009) 458-482. | MR 2451724 | Zbl 1154.35370

[4] R.H. Clayton and A.V. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96 (2008) 19-43.

[5] R.H. Clayton, O.M. Bernus, E.M. Cherry, H. Dierckx, F.H. Fenton, L. Mirabella, A.V. Panfilov, F.B. Sachse, G. Seemann and H. Zhang, Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. (2010) DOI: 10.1016/j.pbiomolbio.2010.05.008.

[6] J.C. Clements, J. Nenonen, P.K.J. Li and M. Horacek, Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 32 (2004) 984-990.

[7] P. Colli Franzone and L.F. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci. 14 (2004) 883-911. | MR 2069498 | Zbl 1068.92024

[8] P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf Eds., Birkhauser (2002) 49-78. | MR 1944157 | Zbl 1036.35087

[9] P. Colli Franzone, L.F. Pavarino and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Math. Biosc. 197 (2005) 35-66. | MR 2167484 | Zbl 1074.92004

[10] P. Colli Franzone, P. Deuflhard, B. Erdmann, J. Lang and L.F. Pavarino, Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28 (2006) 942-962. | MR 2240798 | Zbl 1114.65110

[11] V. Dolean and F. Nataf, An Optimized Schwarz Algorithm for the compressible Euler equations, in Domain Decomposition Methods in Science and Engineering, Proceedings of the DD16 Conference, Springer-Verlag (2007) 173-180. | MR 2334101 | Zbl 1213.76124

[12] V. Dolean, M.J. Gander and L. Gerardo-Giorda, Optimized Schwarz Methods for Maxwell's equations. SIAM J. Sci. Comput. 31 (2009) 2193-2213. | MR 2516149 | Zbl 1192.78044

[13] J.J. Fox, J.L. Mcharg and R.F. Gilmour, Ionic mechanism of electrical alternans. Am. J. Physiol. (Heart Circ. Physiol.) 282 (2002) H516-H530.

[14] M.J. Gander, Optimized Schwarz methods. SIAM J. Num. Anal. 44 (2006) 699-731. | MR 2218966 | Zbl 1117.65165

[15] M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38-60. | MR 1924414 | Zbl 1021.65061

[16] L. Gerardo-Giorda, L. Mirabella, F. Nobile, M. Perego and A. Veneziani, A model-based block-triangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys. 228 (2009) 3625-3639. | MR 2511070 | Zbl 1187.92053

[17] J.P. Keener, Direct activation and defibrillation of cardiac tissue. J. Theor. Biol. 178 (1996) 313-324.

[18] J.P. Keener and J. Sneyd, Mathematical Physiology. Springer-Verlag, New York (1998). | MR 1673204 | Zbl 1273.92017

[19] D.C. Latimer and B.J. Roth, Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans. Biomed. Eng. 45 (1998) 1449-1458.

[20] J. Le Grice, B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin and P.J. Hunter, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. (Heart Circ. Physiol.) 269 (1995) H571-H582.

[21] P.-L. Lions, On the Schwarz alternating method. III: A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20-22, 1989, Philadelphia, R. Glowinski, J. Périaux, T.F. Chan and O. Widlund Eds., SIAM (1990). | MR 1064345 | Zbl 0704.65090

[22] L. Luo and Y. Rudy, A model of the ventricular cardiac action potential: depolarization, repolarization and their interaction. Circ. Res. 68 (1991) 1501-1526.

[23] L. Mirabella, F. Nobile and A. Veneziani, An a posteriori error estimator for model adaptivity in electrocardiology. Technical Report TR-2009-025, Dept. MathCS, Emory University (2009). | Zbl 1230.92026

[24] B.F. Nielsen, T.S. Ruud, G.T. Lines and A. Tveito, Optimal monodomain approximation of the bidomain equations. Appl. Math. Comp. 184 (2007) 276-290. | MR 2294845 | Zbl 1115.92005

[25] A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark and W.R. Giles, Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 82 (1998) 63-81.

[26] L.F. Pavarino and S. Scacchi, Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comp. 31 (2008) 420-443. | MR 2460784 | Zbl 1185.65179

[27] M. Pennacchio and V. Simoncini, Efficient algebraic solution of rection-diffusion systems for the cardiac excitation process. J. Comput. Appl. Math. 145 (2002) 49-70. | MR 1914350 | Zbl 1006.65102

[28] M. Perego and A. Veneziani, An efficient generalization of the Rush-Larsen method for solving electro-physiology membrane equations. Electronic Transaction on Numerical Analysis 35 (2009) 234-256. | MR 2582815 | Zbl 1185.92005

[29] M. Potse, B. Dubé, J. Richer and A. Vinet, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53 (2006) 2425-2435.

[30] A. Quarteroni and A. Valli, Domain Decompostion Methods for Partial Differential Equations. Oxford University Press, Oxford (1999). | MR 1857663 | Zbl 0931.65118

[31] A. Quarteroni, L. Formaggia and A. Veneziani, Complex Systems in Biomedicine, in Computational electrocardiology: mathematical and numerical modeling, P. Colli Franzone, L. Pavarino and G. Savaré Eds., Springer, Milan (2006). | MR 2488001 | Zbl 1169.92031

[32] B. Roth, A comparison of two boundary conditions used with the bidomain model of cardiac tissue. Ann. Biomed. Eng. 19 (1991) 669-678.

[33] S. Scacchi, A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Eng. 197 (2008) 4051-4061. | MR 2458128 | Zbl 1194.78048

[34] B.F. Smith, P.E. Bjørstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996). | MR 1410757 | Zbl 0857.65126

[35] D. Streeter, Gross morphology and fiber geometry in the heart, in Handbook of Physiology 1 (Sect. 2), R.M. Berne Ed., Williams and Wilnkins (1979) 61-112.

[36] A. Toselli and O. Widlund, Domain Decomposition Methods. 1st edition, Springer (2004).

[37] N. Trayanova, Defibrillation of the heart: insights into mechanisms from modelling studies. Exp. Physiol. 91 (2006) 323-337.

[38] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal.: Real World Appl. 10 (2009) 849-868. | MR 2474265 | Zbl 1167.35403

[39] E.J. Vigmond, F. Aguel and N.A. Trayanova, Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49 (2002) 1260-1269.

[40] E.J. Vigmond, R. Weber dos Santos, A.J. Prassl, M. Deo and G. Plank, Solvers for the caridac bidomain equations. Prog. Biophys. Mol. Biol. 96 (2008) 3-18.

[41] R. Weber dos Santos, G. Planck, S. Bauer and E.J. Vigmond, Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51 (2004) 1960-1968.