First variation of the general curvature-dependent surface energy
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 46 (2012) no. 1, p. 59-79

We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation of the first variation of the general surface energy using tools from shape differential calculus. We first derive a scalar strong form and next a vector weak form of the first variation. The latter reveals the variational structure of the first variation, avoids dealing explicitly with the tangential gradient of the unit normal, and thus can be easily discretized using parametric finite elements. Our results are valid for surfaces in any number of dimensions and unify all previous results derived for specific examples of such surface energies.

DOI : https://doi.org/10.1051/m2an/2011019
Classification:  49K99,  49Q05,  49Q10,  49Q12,  49S05,  53A05
Keywords: surface energy, gradient flow, mean curvature, Willmore functional
@article{M2AN_2012__46_1_59_0,
     author = {Do\u gan, G\"unay and Nochetto, Ricardo H.},
     title = {First variation of the general curvature-dependent surface energy},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {1},
     year = {2012},
     pages = {59-79},
     doi = {10.1051/m2an/2011019},
     zbl = {1270.49042},
     mrnumber = {2846367},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2012__46_1_59_0}
}
Doğan, Günay; Nochetto, Ricardo H. First variation of the general curvature-dependent surface energy. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 46 (2012) no. 1, pp. 59-79. doi : 10.1051/m2an/2011019. http://www.numdam.org/item/M2AN_2012__46_1_59_0/

[1] F. Almgren and J.E. Taylor, Optimal geometry in equilibrium and growth. Fractals 3 (1995) 713-723. Symposium in Honor of B. Mandelbrot. | MR 1410290 | Zbl 0885.58015

[2] F. Almgren, J.E. Taylor and L. Wang, Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31 (1993) 387-438. | MR 1205983 | Zbl 0783.35002

[3] L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191-246. | MR 1387558 | Zbl 0957.49029

[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005). | MR 2129498 | Zbl 1145.35001

[5] J.W. Barrett, H. Garcke and R. Nürnberg, Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31 (2008) 225-253. | MR 2460777 | Zbl 1186.65133

[6] M. Bauer and E. Kuwert, Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 10 (2003) 553-576. | MR 1941840 | Zbl 1029.53073

[7] T. Baumgart, S.T. Hess and W.W. Webb, Image coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821-824.

[8] G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (1996) 537-566. | MR 1416006 | Zbl 0873.53011

[9] A. Bonito, R.H. Nochetto and M.S. Pauletti, Parametric FEM for geometric biomembranes. J. Comput. Phys. 229 (2010) 3171-3188. | MR 2601095 | Zbl pre05693254

[10] J.W. Cahn and D.W. Hoffman, A vector thermodynamics for anisotropic surfaces. II. Curved and facetted surfaces. Acta Metall. 22 (1974) 1205-1214.

[11] T. Chan and L. Vese, A level set algorithm for minimizing the Mumford-Shah functional in image processing, in Proceedings of the 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision (2001) 161-168.

[12] K. Chen, C. Jayaprakash, R. Pandit and W. Wenzel, Microemulsions: A Landau-Ginzburg theory. Phys. Rev. Lett. 65 (1990) 2736-2739.

[13] P. Cicuta, S.L. Keller and S.L. Veatch, Diffusion of liquid domains in lipid bilayer membranes. J. Phys. Chem. B 111 (2007) 3328-3331.

[14] U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf and R. Rusu, A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21 (2004) 427-445. | MR 2058390 | Zbl 1069.65546

[15] M.C. Delfour and J.-P. Zolésio, Shapes and Geometries, Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001). | MR 1855817 | Zbl 1251.49001

[16] H.G. Döbereiner, O. Selchow and R. Lipowsky, Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur. Biophys. J. 28 (1999) 174-178.

[17] G. Doğan, P. Morin and R.H. Nochetto, A variational shape optimization approach for image segmentation with a Mumford-Shah functional. SIAM J. Sci. Comput. 30 (2008) 3028-3049. | MR 2452377 | Zbl 1195.49036

[18] G. Doğan, P. Morin, R.H. Nochetto and M. Verani, Discrete gradient flows for shape optimization and applications. Comput. Meth. Appl. Mech. Eng. 196 (2007) 3898-3914. | MR 2340012 | Zbl 1173.49307

[19] M. Droske and M. Bertozzi, Higher-order feature-preserving geometric regularization. SIAM J. Imaging Sci. 3 (2010) 21-51. | MR 2609457 | Zbl 1185.65066

[20] G. Dziuk, Computational parametric Willmore flow. Numer. Math. 111 (2008) 55-80. | MR 2448203 | Zbl 1158.65073

[21] G. Dziuk, E. Kuwert and R. Schätzle, Evolution of elastic curves in n : existence and computation. SIAM J. Math. Anal. 33 (electronic) (2002) 1228-1245. | MR 1897710 | Zbl 1031.53092

[22] C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 6585-6612. | MR 2660322 | Zbl pre05784817

[23] W. Helfrich, Elastic properties of lipid bilayers - theory and possible experiments. Zeitschrift Fur Naturforschung C-A J. Biosc. 28 (1973) 693.

[24] M. Hintermüller and W. Ring, A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64 (2003/04) 442-467. | MR 2049659 | Zbl 1073.68095

[25] M. Hintermüller and W. Ring, An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. J. Math. Imaging and Vision 20 (2004) 19-42. Special issue on mathematics and image analysis. | MR 2049779

[26] J.T. Jenkins, The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32 (1977) 755-764. | MR 441076 | Zbl 0358.73074

[27] R. Keriven and O. Faugeras, Variational principles, surface evolution, PDEs, level set methods and the stereo problem. Technical Report 3021, INRIA (1996). | Zbl 0973.94004

[28] R. Keriven and O. Faugeras, Variational principles, surface evolution, PDEs, level set methods and the stereo problem. IEEE Trans. Image Process. 7 (1998) 336-344. | MR 1669532 | Zbl 0973.94004

[29] R. Kimmel and A.M. Bruckstein, Regularized Laplacian zero crossings as optimal edge integrators. IJCV 53 (2003) 225-243.

[30] E. Kuwert and R. Schätzle, The Willmore flow with small initial energy. J. Differential Geom. 57 (2001) 409-441. | MR 1882663 | Zbl 1035.53092

[31] E. Kuwert and R. Schätzle, Gradient flow for the Willmore functional. Comm. Anal. Geom. 10 (2002) 307-339. | MR 1900754 | Zbl 1029.53082

[32] E. Kuwert and R. Schätzle, Removability of point singularities of Willmore surfaces. Ann. Math. 160 (2004) 315-357. | MR 2119722 | Zbl 1078.53007

[33] M. Laradji and O.G. Mouritsen, Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study. J. Chem. Phys. 112 (2000) 8621-8630.

[34] M. Leventon, O. Faugeraus and W. Grimson, Level set based segmentation with intensity and curvature priors, in Proceedings of Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings (2000) 4-11.

[35] G.B. Mcfadden, A.A. Wheeler, R.J. Braun, S.R. Coriell and R.F. Sekerka, Phase-field models for anisotropic interfaces. Phys. Rev. E 48 (1993) 2016-2024. | MR 1377920

[36] J. Melenkevitz and S.H. Javadpour, Phase separation dynamics in mixtures containing surfactants. J. Chem. Phys. 107 (1997) 623-629.

[37] R. Rusu, An algorithm for the elastic flow of surfaces. Interfaces and Free Boundaries 7 (2005) 229-239. | MR 2171130 | Zbl 1210.35149

[38] U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13-137.

[39] L. Simon, Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1 (1993) 281-326. | MR 1243525 | Zbl 0848.58012

[40] G. Simonett, The Willmore flow near spheres. Differential Integral Equations 14 (2001) 1005-1014. | MR 1827100 | Zbl 1161.35429

[41] J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin (1992). | Zbl 0761.73003

[42] G. Sundaramoorthi, A. Yezzi, A. Mennucci and G. Sapiro, New possibilities with Sobolev active contours, in Proceedings of the 1st International Conference on Scale Space Methods and Variational Methods in Computer Vision (2007).

[43] J.E. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc. 84 (1978) 568-588. | MR 493671 | Zbl 0392.49022

[44] J.E. Taylor, Mean curvature and weighted mean curvature. Acta Metall. Mater. 40 (1992) 1475-1485.

[45] J.E. Taylor and J.W. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77 (1994) 183-197. | MR 1300532 | Zbl 0844.35044

[46] J.E. Taylor and J.W. Cahn, Diffuse interfaces with sharp corners and facets: Phase field modeling of strongly anisotropic surfaces. Physica D 112 (1998) 381-411. | MR 1607466 | Zbl 0930.35201

[47] S.L. Veatch and S.L. Keller, Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85 (2003) 3074-3083.

[48] A.A. Wheeler and G.B. Mcfadden, A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics. Eur. J. Appl. Math. 7 (1996) 367-381. | MR 1413370 | Zbl 0909.35160

[49] T.J. Willmore, Total curvature in Riemannian geometry. Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester (1982). | MR 686105 | Zbl 0501.53038