On the effect of temperature and velocity relaxation in two-phase flow models
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 46 (2012) no. 2, p. 411-442

We study a two-phase pipe flow model with relaxation terms in the momentum and energy equations, driving the model towards dynamic and thermal equilibrium. These equilibrium states are characterized by the velocities and temperatures being equal in each phase. For each of these relaxation processes, we consider the limits of zero and infinite relaxation times. By expanding on previously established results, we derive a formulation of the mixture sound velocity for the thermally relaxed model. This allows us to directly prove a subcharacteristic condition; each level of equilibrium assumption imposed reduces the propagation velocity of pressure waves. Furthermore, we show that each relaxation procedure reduces the mixture sound velocity with a factor that is independent of whether the other relaxation procedure has already been performed. Numerical simulations indicate that thermal relaxation in the two-fluid model has negligible impact on mass transport dynamics. However, the velocity difference of sonic propagation in the thermally relaxed and unrelaxed two-fluid models may significantly affect practical simulations.

DOI : https://doi.org/10.1051/m2an/2011039
Classification:  76T10,  65M08,  35L60
Keywords: two-fluid model, relaxation system, subcharacteristic condition
@article{M2AN_2012__46_2_411_0,
     author = {Mart\'\i nez Ferrer, Pedro Jos\'e and Fl\aa tten, Tore and Munkejord, Svend Tollak},
     title = {On the effect of temperature and velocity relaxation in two-phase flow models},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {2},
     year = {2012},
     pages = {411-442},
     doi = {10.1051/m2an/2011039},
     zbl = {1271.76345},
     mrnumber = {2855648},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2012__46_2_411_0}
}
Martínez Ferrer, Pedro José; Flåtten, Tore; Munkejord, Svend Tollak. On the effect of temperature and velocity relaxation in two-phase flow models. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 46 (2012) no. 2, pp. 411-442. doi : 10.1051/m2an/2011039. http://www.numdam.org/item/M2AN_2012__46_2_411_0/

[1] R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361-396. | MR 1973195 | Zbl 1072.76594

[2] M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861-889. | Zbl 0609.76114

[3] M. Baudin, F. Coquel and Q.H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914-936. | MR 2199914 | Zbl 1130.76384

[4] M. Baudin, C. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411-440. | MR 2117734 | Zbl 1204.76025

[5] K.H. Bendiksen, D. Malnes, R. Moe and S. Nuland, The dynamic two-fluid model OLGA: theory and application. SPE Prod. Eng. 6 (1991) 171-180.

[6] D. Bestion, The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229-245.

[7] C.-H. Chang and M.-S. Liou, A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme. J. Comput. Phys. 225 (2007) 850-873. | MR 2346701 | Zbl 1192.76030

[8] G.-Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787-830. | MR 1280989 | Zbl 0806.35112

[9] P. Cinnella, Roe-type schemes for dense gas flow computations. Comput. Fluids 35 (2006) 1264-1281. | Zbl 1177.76216

[10] F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272-288. | MR 1474408 | Zbl 0893.76052

[11] F. Coquel, Q.L. Nguyen, M. Postel and Q.H. Tran, Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Math. Comput. 79 (2010) 1493-1533. | MR 2630001 | Zbl pre05776275

[12] S. Evje and K.K. Fjelde, Relaxation schemes for the calculation of two-phase flow in pipes. Math. Comput. Modelling 36 (2002) 535-567. | MR 1928608 | Zbl 1129.76345

[13] S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175-210. | Zbl 1032.76696

[14] S. Evje and T. Flåtten, Hybrid central-upwind schemes for numerical resolution of two-phase flows. ESAIM: M2AN 39 (2005) 253-273. | Numdam | MR 2143949 | Zbl 1130.76057

[15] S. Evje and T. Flåtten, On the wave structure of two-phase flow models. SIAM J. Appl. Math. 67 (2007) 487-511. | MR 2285874 | Zbl 1191.76100

[16] T. Flåtten and S.T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: M2AN 40 (2006) 735-764. | Numdam | MR 2274776 | Zbl 1123.76038

[17] T. Flåtten, A. Morin and S.T. Munkejord, Wave propagation in multicomponent flow models. SIAM J. Appl. Math. 70 (2010) 2861-2882. | MR 2735107 | Zbl pre05876566

[18] T. Flåtten, A. Morin and S.T. Munkejord, On solutions to equilibrium problems for systems of stiffened gases. SIAM J. Appl. Math. 71 (2011) 41-67. | MR 2765648 | Zbl pre05894938

[19] H. Guillard and F. Duval, A Darcy law for the drift velocity in a two-phase flow model. J. Comput. Phys. 224 (2007) 288-313. | MR 2322272 | Zbl 1119.76067

[20] S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48 (1995) 235-276. | MR 1322811 | Zbl 0826.65078

[21] K.H. Karlsen, C. Klingenberg and N.H. Risebro, A relaxation scheme for conservation laws with a discontinuous coefficient. Math. Comput. 73 (2004) 1235-1259. | MR 2047086 | Zbl 1078.65076

[22] R.J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002). | MR 1925043 | Zbl 1010.65040

[23] T.-P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153-175. | MR 872145 | Zbl 0633.35049

[24] P.J. Martínez Ferrer, Numerical and mathematical analysis of a five-equation model for two-phase flow. Master's thesis, SINTEF Energy Research, Trondheim, Norway (2010). Available from http://www.sintef.no/Projectweb/CO2-Dynamics/Publications/.

[25] J.M. Masella, Q.H. Tran, D. Ferre and C. Pauchon, Transient simulation of two-phase flows in pipes. Int. J. Multiphase Flow 24 (1998) 739-755. | Zbl 1121.76459

[26] S.T. Munkejord, Partially-reflecting boundary conditions for transient two-phase flow. Commun. Numer. Meth. Eng. 22 (2007) 781-795. | MR 2244956 | Zbl 1115.76053

[27] S.T. Munkejord, S. Evje and T. Flåtten, A MUSTA scheme for a nonconservative two-fluid model. SIAM J. Sci. Comput. 31 (2009) 2587-2622. | MR 2520291 | Zbl pre05770802

[28] A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664-698. | MR 2145395 | Zbl 1061.76083

[29] R. Natalini, Recent results on hyperbolic relaxation problems. Analysis of systems of conservation laws, in Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 99. Chapman & Hall/CRC, Boca Raton, FL (1999) 128-198. | MR 1679940 | Zbl 0940.35127

[30] H. Paillère, C. Corre and J.R. Carcía Gascales, On the extension of the AUSM+ scheme to compressible two-fluid models. Comput. Fluids 32 (2003) 891-916. | MR 1966060 | Zbl 1040.76044

[31] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129-155. | MR 2231946 | Zbl 1203.65111

[32] V.H. Ransom, Faucet Flow, in Numerical Benchmark Tests, Multiph. Sci. Technol. 3, edited by G.F. Hewitt, J.M. Delhaye and N. Zuber. Hemisphere-Springer, Washington, USA (1987) 465-467.

[33] P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | MR 640362 | Zbl 0474.65066

[34] R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. | MR 1684902 | Zbl 0937.76053

[35] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313-350. | MR 2436919 | Zbl 1147.76060

[36] H.B. Stewart and B. Wendroff, Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363-409. | MR 768670 | Zbl 0596.76103

[37] J.H. Stuhmiller, The influence of interfacial pressure forces on the character of two-phase flow model equations. Int. J. Multiphase Flow 3 (1977) 551-560. | Zbl 0368.76085

[38] I. Tiselj and S. Petelin, Modelling of two-phase flow with second-order accurate scheme. J. Comput. Phys. 136 (1997) 503-521. | Zbl 0918.76050

[39] I. Toumi, A weak formulation of Roe's approximate Riemann solver. J. Comput. Phys. 102 (1992) 360-373. | MR 1187694 | Zbl 0783.65068

[40] I. Toumi, An upwind numerical method for two-fluid two-phase flow models. Nucl. Sci. Eng. 123 (1996) 147-168.

[41] Q.H. Tran, M. Baudin and F. Coquel, A relaxation method via the Born-Infeld system. Math. Mod. Methods Appl. Sci. 19 (2009) 1203-1240. | MR 2555469 | Zbl 1182.35162

[42] J.A. Trapp and R.A. Riemke, A nearly-implicit hydrodynamic numerical scheme for two-phase flows. J. Comput. Phys. 66 (1986) 62-82. | MR 865704 | Zbl 0622.76110

[43] B. Van Leer, Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14 (1974) 361-370. | Zbl 0276.65055

[44] B. Van Leer, Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J. Comput. Phys. 23 (1977) 276-299. | Zbl 0339.76056

[45] WAHA3 Code Manual, JSI Report IJS-DP-8841. Jožef Stefan Institute, Ljubljana, Slovenia (2004).

[46] A. Zein, M. Hantke and G. Warnecke, Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229 (2010) 2964-2998. | MR 2595804 | Zbl pre05693284

[47] N. Zuber and J.A. Findlay, Average volumetric concentration in two-phase flow systems. J. Heat Transfer 87 (1965) 453-468.