A priori error estimates for a state-constrained elliptic optimal control problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1107-1120.

We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 - ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

DOI : 10.1051/m2an/2011076
Classification : 49J20, 35B45
Mots-clés : elliptic optimal control problem, state constraint, a priori error estimates
@article{M2AN_2012__46_5_1107_0,
     author = {R\"osch, Arnd and Steinig, Simeon},
     title = {\protect\emph{A priori }error estimates for a state-constrained elliptic optimal control problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1107--1120},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {5},
     year = {2012},
     doi = {10.1051/m2an/2011076},
     zbl = {1271.65104},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2011076/}
}
TY  - JOUR
AU  - Rösch, Arnd
AU  - Steinig, Simeon
TI  - A priori error estimates for a state-constrained elliptic optimal control problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 1107
EP  - 1120
VL  - 46
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2011076/
DO  - 10.1051/m2an/2011076
LA  - en
ID  - M2AN_2012__46_5_1107_0
ER  - 
%0 Journal Article
%A Rösch, Arnd
%A Steinig, Simeon
%T A priori error estimates for a state-constrained elliptic optimal control problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 1107-1120
%V 46
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2011076/
%R 10.1051/m2an/2011076
%G en
%F M2AN_2012__46_5_1107_0
Rösch, Arnd; Steinig, Simeon. A priori error estimates for a state-constrained elliptic optimal control problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1107-1120. doi : 10.1051/m2an/2011076. http://archive.numdam.org/articles/10.1051/m2an/2011076/

[1] R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic Press, San Diego (2007). | MR | Zbl

[2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623-727. | MR | Zbl

[3] J.W. Barrett and C.M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309-325. | MR | Zbl

[4] J. Bergh and J. Löfström, Interpolation spaces. Springer, Berlin (1976). | Zbl

[5] M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. | MR | Zbl

[6] E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4 (1986) 1309-1322. | MR | Zbl

[7] E. Casas and F. Tröltzsch, Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM : COCV 16 (2010) 581-600. | EuDML | Numdam | MR | Zbl

[8] S. Cherednichenko and A. Rösch, Error estimates for the regularization of optimal control problems with pointwise control and state constraints. Z. Anal. Anwendungen 27 (2008) 195-212. | MR | Zbl

[9] S. Cherednichenko, K. Krumbiegel and A. Rösch, Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24 (2008). | MR | Zbl

[10] P.G. Ciarlet, The finite element method for elliptic problems. SIAM Classics In Applied Mathematics, Philadelphia (2002). | MR | Zbl

[11] J.C. De Los Reyes, C. Meyer and B. Vexler, Finite element error analysis for state-constrained optimal control of the Stokes equations. Control and Cybernetics 37 (2008) 251-284. | MR | Zbl

[12] K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937-1953. | MR | Zbl

[13] K. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, edited by K. Kunisch, G. Of and O. Steinbach, Berlin, Heidelberg, Springer-Verlag (2008) 597-604. | Zbl

[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR | Zbl

[15] M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865-888. | MR | Zbl

[16] M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer-Verlag, Berlin (2009). | MR | Zbl

[17] K. Kunisch and A. Rösch, Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002) 321-334. | MR | Zbl

[18] C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics 37 (2008) 51-85. | MR | Zbl

[19] C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209-228. | MR | Zbl

[20] P. Neittaanmaki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems. Springer-Verlag, New York (2006). | MR | Zbl

[21] R. Rannacher, Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet-problem. Math. Z. 149 (1976) 69-77. | MR | Zbl

[22] A. Rösch and F. Tröltzsch, Existence of regular Lagrange multipliers for elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 45 (2006) 548-564. | Zbl

[23] A.H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I : Global estimates. Math. Comput. 67 (1998) 877-899. | MR | Zbl

[24] A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for the finite element method. Math. Comput. 31 (1977) 414-442. | MR | Zbl

[25] A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in L∞ of the | MR | Zbl

[26] A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software, The Finite Element Toolbox ALBERTA. Springer-Verlag, Berlin (2000). | MR | Zbl

[27] F. Tröltzsch, Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim. 15 (2005) 616-634. | MR | Zbl

[28] F. Tröltzsch, Optimal control of partial differential equations. Amer. Math. Soc., Providence, Rhode Island (2010).

[29] D.Z. Zanger, The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25 (2000) 1771-1808. | MR | Zbl

Cité par Sources :