Classification: 35J25, 65N30, 65D99

Keywords: reduced basis method, reduced basis element method, domain decomposition, Schur complement, elliptic partial differential equations, a posteriori error estimation, component mode synthesis, parametrized systems

@article{M2AN_2013__47_1_213_0, author = {Phuong Huynh, Dinh Bao and Knezevic, David J. and Patera, Anthony T.}, title = {A Static condensation Reduced Basis Element method : approximation and a posteriori error estimation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, pages = {213-251}, doi = {10.1051/m2an/2012022}, zbl = {1276.65082}, language = {en}, url = {http://www.numdam.org/item/M2AN_2013__47_1_213_0} }

Phuong Huynh, Dinh Bao; Knezevic, David J.; Patera, Anthony T. A Static condensation Reduced Basis Element method : approximation and a posteriori error estimation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 47 (2013) no. 1, pp. 213-251. doi : 10.1051/m2an/2012022. http://www.numdam.org/item/M2AN_2013__47_1_213_0/

[1] Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Visualization Sci. 13 (2010) 249-264. | MR 2748450 | Zbl 1220.65074

, , and ,[2] Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Methods Softw. 26 (2011) 643-669, doi: 10.1080/10556781003767904. | MR 2837792 | Zbl 1227.49046

, and ,[3] An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25 (2004) 2084-2106. | MR 2086832 | Zbl 1133.65304

and .[4] Galerkin lumped parameter methods for transient problems. Int. J. Numer. Methods Eng. 87 (2011) 943-961, doi: 10.1002/nme.3140. | MR 2835769 | Zbl 1242.80005

and ,[5] Convergence rates for greedy algorithms in reduced basis methods. Technical Report, Aachen Institute for Advanced Study in Computational Engineering Science, preprint : AICES-2010/05-2 (2010). | MR 2821591 | Zbl 1229.65193

, , , , and ,[6] Component mode synthesis and eigenvalues of second order operators : discretization and algorithm. ESAIM : M2AN 26 (1992) 385-423. | Numdam | MR 1160133 | Zbl 0765.65100

,[7] The condition number of the Schur complement in domain decompostion. Numer. Math. 83 (1999) 187-203. | MR 1712684 | Zbl 0936.65141

,[8] A priori convergence of the greedy algorithm for the parametrized reduced basis. To appear in ESAIM : M2AN (2010). | Numdam | Zbl 1272.65084

, , , and ,[9] A Seamless Reduced Basis Element Methods for 2D Maxwell's Problem : An Introduction, edited by J. Hesthaven and E.M. Rønquist, in Spectral and High Order Methods for Partial Differential Equations-Selected papers from the ICASOHOM'09 Conference 76 (2011). | MR 3204811 | Zbl 1217.78056

, and ,[10] Coupling of substructures for dynamic analyses. AIAA J. 6 (1968) 1313-1319. | Zbl 0159.56202

and ,[11] Adaptive port reduction in static condensation, in MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling (2012) (Submitted).

, , , and ,[12] A reduced basis method for multiple electromagnetic scattering in three dimensions. Technical Report 2011-9, Scientific Computing Group, Brown University, Providence, RI, USA (2011).

, and ,[13] Matrix Computations. Johns Hopkins University Press (1996). | MR 1417720 | Zbl 0865.65009

and ,[14] Model reduction methods for dynamic analyses of large structures. Comput. Struct. 47 (1993) 735-749. | MR 1224096 | Zbl 0811.73062

and ,[15] A special finite element method based on component mode synthesis. ESAIM : M2AN 44 (2010) 401-420. | Numdam | MR 2666649 | Zbl 1190.65173

and ,[16] A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | MR 1455261 | Zbl 0880.73065

and ,[17] On the dynamic analysis of structural systems using component modes, in First AIAA Annual Meeting. Washington, DC, AIAA paper, No. 64-487 (1964).

,[18] A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473-478. | MR 2367928 | Zbl 1127.65086

, , and ,[19] Quarteroni and G.A., Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Eng. 221-222 (2012) 63-82. | MR 2913950 | Zbl 1253.76139

,[20] Adaptive component mode synthesis in linear elasticity. Int. J. Numer. Methods Eng. 86 (2011) 829-844. | MR 2829770 | Zbl 1235.74288

, and ,[21] A new local reduced basis discontinuous galerkin approach for heterogeneous multiscale problems. C. R. Math. 349 (2011) 1233-1238. | MR 2861991 | Zbl 1269.65127

, and ,[22] B.S. Kirk, J.W. Peterson, R.H. Stogner and G.F. Carey, libMesh : A C++ library for Parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22 (2006) 237-254.

[23] A high-performance parallel implementation of the certified reduced basis method. Comput. Methods Appl. Mech. Eng. 200 (2011) 1455-1466. | Zbl 1228.76109

and ,[24] Y Maday and EM Rønquist, The reduced basis element method : Application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240-258. | MR 2114342 | Zbl 1077.65120

[25] A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437-446. | MR 1910581 | Zbl 1014.65115

, and ,[26] A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys. 227 (2007) 9807-9822. | MR 2469035 | Zbl 1155.65391

,[27] Reliable real-time solution of parametrized partial differential equations : Reduced-basis output bounds methods. J. Fluids Eng. 124 (2002) 70-80.

, , , , and ,[28] Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15 (2008) 229-275. | MR 2430350 | Zbl pre05344486

, and ,