The aim of this paper is to analyze a formulation of the eddy current problem in terms of a time-primitive of the electric field in a bounded domain with input current intensities or voltage drops as source data. To this end, we introduce a Lagrange multiplier to impose the divergence-free condition in the dielectric domain. Thus, we obtain a time-dependent weak mixed formulation leading to a degenerate parabolic problem which we prove is well-posed. We propose a finite element method for space discretization based on Nédélec edge elements for the main variable and standard finite elements for the Lagrange multiplier, for which we obtain error estimates. Then, we introduce a backward Euler scheme for time discretization and prove error estimates for the fully discrete problem, too. Finally, the method is applied to solve a couple of test problems.
Mots-clés : Eddy current problems, time-dependent electromagnetic problems, input current intensities, voltage drops, finite elements
@article{M2AN_2013__47_3_875_0, author = {Berm\'udez, Alfredo and L\'opez-Rodr{\'\i}guez, Bibiana and Rodr{\'\i}guez, Rodolfo and Salgado, Pilar}, title = {An eddy current problem in terms of a time-primitive of the electric field with non-local source conditions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {875--902}, publisher = {EDP-Sciences}, volume = {47}, number = {3}, year = {2013}, doi = {10.1051/m2an/2013065}, mrnumber = {3056413}, zbl = {1266.78025}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013065/} }
TY - JOUR AU - Bermúdez, Alfredo AU - López-Rodríguez, Bibiana AU - Rodríguez, Rodolfo AU - Salgado, Pilar TI - An eddy current problem in terms of a time-primitive of the electric field with non-local source conditions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 875 EP - 902 VL - 47 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013065/ DO - 10.1051/m2an/2013065 LA - en ID - M2AN_2013__47_3_875_0 ER -
%0 Journal Article %A Bermúdez, Alfredo %A López-Rodríguez, Bibiana %A Rodríguez, Rodolfo %A Salgado, Pilar %T An eddy current problem in terms of a time-primitive of the electric field with non-local source conditions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 875-902 %V 47 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013065/ %R 10.1051/m2an/2013065 %G en %F M2AN_2013__47_3_875_0
Bermúdez, Alfredo; López-Rodríguez, Bibiana; Rodríguez, Rodolfo; Salgado, Pilar. An eddy current problem in terms of a time-primitive of the electric field with non-local source conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 875-902. doi : 10.1051/m2an/2013065. http://archive.numdam.org/articles/10.1051/m2an/2013065/
[1] An E-based mixed formulation for a time-dependent eddy current problem. Math. Comput. 78 (2009) 1929-1949. | MR | Zbl
, and ,[2] A hybrid formulation of eddy current problems. Numer. Methods Part. Differ. Equ. 21 (2005) 742-763. | MR | Zbl
, and ,[3] Mixed finite element approximation of eddy current problems. IMA J. Numer. Anal. 24 (2004) 255-271. | MR | Zbl
, and ,[4] An optimal decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comput. 68 (1999) 607-631. | MR | Zbl
and ,[5] Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer-Verlag, Italia (2010). | MR | Zbl
and ,[6] Voltage and current excitation for time-harmonic eddy-current problems. SIAM J. Appl. Math. 68 (2008) 1477-1494. | MR | Zbl
and ,[7] Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | MR | Zbl
, , and ,[8] Equivalence between two finite element methods for the eddy current problem. C. R. Math. Acad. Sci. Paris, Series I 34 (2010) 769-774. | Zbl
, , and ,[9] Numerical solution of transient eddy current problems with input current intensities as boundary data. IMA J. Numer. Anal. 32 (2012) 1001-1029. | MR | Zbl
, , and ,[10] A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations. SIAM J. Numer. Anal. 40 (2002) 1823-1849. | Zbl
, and ,[11] Numerical analysis of electric field formulations of the eddy current model. Numer. Math. 102 (2005) 181-201. | Zbl
, and ,[12] Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998). | MR | Zbl
,[13] Most general non-local boundary conditions for the Maxwell equation in a bounded region. COMPEL 19 (2000) 239-245. | MR | Zbl
,[14] On traces for H(curl;Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845-876. | MR | Zbl
, and ,[15] Applications of the mortar element method to 3D electromagnetic moving structures. Computational Electromagnetics, edited by C. Carstensen et al., Springer Verlag. Lect. Notes Comput. Sci. Eng. 28 (2003) 35-50. | MR | Zbl
, and ,[16] An optimal method for 3D eddy currents. IEEE Trans. Magn. 19 (1983) 2450-2452.
, and ,[17] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | MR | Zbl
and ,[18] Vector potential formulation for magnetostatic and modelling of permanent magnets. IMA J. Appl. Math. 66 (2001) 293-318. | MR | Zbl
and ,[19] Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[20] Current and voltage excitations for the eddy current model. Int. J. Numer. Model. 18 (2005) 1-21. | Zbl
and ,[21] Calculation of transient 3D eddy currents using edge elements. IEEE Trans. Magn. 26 (1990) 466-469.
,[22] Three dimensional eddy current calculation using edge elements for magnetic vector potential. Applied Electromagnetic in Materials, Pergamon Press, Oxford (1988) 225-236.
,[23] Improved T − ψ nodal finite element schemes for eddy current problems. Appl. Math. Comput. 218 (2011) 287-302. | MR | Zbl
, , and ,[24] The finite element analysis of a decoupled T-Ψ scheme for solving eddy-current problems. Appl. Math. Comput. 205 (2008) 352-361. | MR | Zbl
,[25] Eddy current modelling for non destructive testing. Proc. of 16th World Conf. on NDT, Rapport DSR 31. Montreal, August 30 - September 3 (2004).
, , and ,[26] On the convergence of transient eddy-current problems. IEEE Trans. Magn. 40 (2004) 957-960.
and ,[27] Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. London, Academic Press (1990). | Zbl
,[28] An adaptive finite element method for the H-ψ formulation of time-dependent eddy current problems. Numer. Math. 103 (2006) 667-689. | MR | Zbl
, and ,Cité par Sources :