We construct an approximate Riemann solver for the isentropic Baer-Nunziato two-phase flow model, that is able to cope with arbitrarily small values of the statistical phase fractions. The solver relies on a relaxation approximation of the model for which the Riemann problem is exactly solved for subsonic relative speeds. In an original manner, the Riemann solutions to the linearly degenerate relaxation system are allowed to dissipate the total energy in the vanishing phase regimes, thereby enforcing the robustness and stability of the method in the limits of small phase fractions. The scheme is proved to satisfy a discrete entropy inequality and to preserve positive values of the statistical fractions and densities. The numerical simulations show a much higher precision and a more reduced computational cost (for comparable accuracy) than standard numerical schemes used in the nuclear industry. Finally, two test-cases assess the good behavior of the scheme when approximating vanishing phase solutions.
Mots-clés : two-phase flows, entropy-satisfying methods, relaxation techniques, Riemann problem
@article{M2AN_2014__48_1_165_0, author = {Coquel, Fr\'ed\'eric and H\'erard, Jean-Marc and Saleh, Khaled and Seguin, Nicolas}, title = {A robust entropy-satisfying finite volume scheme for the isentropic {Baer-Nunziato} model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {165--206}, publisher = {EDP-Sciences}, volume = {48}, number = {1}, year = {2014}, doi = {10.1051/m2an/2013101}, mrnumber = {3177841}, zbl = {1286.76098}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013101/} }
TY - JOUR AU - Coquel, Frédéric AU - Hérard, Jean-Marc AU - Saleh, Khaled AU - Seguin, Nicolas TI - A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 165 EP - 206 VL - 48 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013101/ DO - 10.1051/m2an/2013101 LA - en ID - M2AN_2014__48_1_165_0 ER -
%0 Journal Article %A Coquel, Frédéric %A Hérard, Jean-Marc %A Saleh, Khaled %A Seguin, Nicolas %T A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 165-206 %V 48 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013101/ %R 10.1051/m2an/2013101 %G en %F M2AN_2014__48_1_165_0
Coquel, Frédéric; Hérard, Jean-Marc; Saleh, Khaled; Seguin, Nicolas. A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 1, pp. 165-206. doi : 10.1051/m2an/2013101. http://archive.numdam.org/articles/10.1051/m2an/2013101/
[1] Relaxation and numerical approximation of a two-fluid two-pressure diphasic model. ESAIM: M2AN 43 (2009) 1063-1097. | Numdam | MR
, , and ,[2] The coupling of homogeneous models for two-phase flows. Int. J. Finite 4 (2007) 39. | MR
, , , , , and ,[3] A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54 (2012) 67-91. | MR | Zbl
, and ,[4] The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 195 (2004) 434-464. | MR | Zbl
and ,[5] A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861-889. | Zbl
and ,[6] Why many theories of shock waves are necessary: kinetic relations for non-conservative systems, in vol. 142 of Proc. R. Soc. Edinburgh, Section: A Mathematics (2012) 1-37. | MR | Zbl
, and ,[7] Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | MR | Zbl
,[8] Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Commun. Partial Differ. Eqs. 24 (1999) 2173-2189. | MR | Zbl
and ,[9] Coupling nonlinear hyperbolic equations (iii). A regularization method based on thick interfaces. SIAM J. Numer. Anal. 51 (2013) 1108-1133. | MR
, and ,[10] Large time-step numerical scheme for the seven-equation model of compressible two-phase flows, in vol. 4 of Springer Proceedings in Mathematics, FVCA 6 (2011) 225-233. | MR
, , and ,[11] Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787-830. | MR | Zbl
, and ,[12] Closure laws for a two-fluid two pressure model. C. R. Acad. Sci. I-334 (2002) 927-932. | MR | Zbl
, , and ,[13] Some new Godunov and relaxation methods for two-phase flow problems, in Godunov methods (Oxford, 1999). Kluwer/Plenum, New York (2001) 179-188. | MR | Zbl
, , , and ,[14] Relaxation of fluid systems. Math. Models Methods Appl. Sci. 22 (2012). | MR | Zbl
, and ,[15] A splitting method for the isentropic Baer-Nunziato two-phase flow model. ESAIM: Proc., 38 (2012) 241-256. | MR
, and ,[16] Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. (2013) 11.
, , and ,[17] A Robust and Entropy-Satisfying Numerical Scheme for Fluid Flows in Discontinuous Nozzles. http://hal.archives-ouvertes.fr/hal-00795446 (2013). | MR
, and ,[18] A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit. J. Comput. Phys. 227 (2008) 9241-9270. | MR | Zbl
and ,[19] FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Engrg. 199 (2010) 625-647. | MR | Zbl
, , , and ,[20] Mathematical analysis of a two-phase continuum mixture theory. Contin. Mech. Thermodyn. 4 (1992) 279-312. | MR | Zbl
and ,[21] Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663-700. | MR | Zbl
, and ,[22] Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326-360. | MR | Zbl
and ,[23] The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Institut. Henri Poincaré Anal. Non Linéaire 21 (2004) 881-902. | Numdam | MR | Zbl
and ,[24] Numerical approximation of hyperbolic systems of conservation laws, in vol. 118 of Appl. Math. Sci. Springer-Verlag, New York (1996). | MR | Zbl
and ,[25] Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal. 169 (2003) 89-117. | MR | Zbl
and ,[26] On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35-61. | MR | Zbl
, and ,[27] A fractional step method to compute a class of compressible gas-luiquid flows. Comput. Fluids. Int. J. 55 (2012) 57-69. | MR | Zbl
and ,[28] Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625-640. | MR | Zbl
and ,[29] Two-phase modeling of DDT: Structure of the velocity-relaxation zone. Phys. Fluids 9 (1997) 3885-3897.
, , , and ,[30] Dissipative structure and entropy for hyperbolic systems of balance laws. Archive for Rational Mech. Anal. 174 (2004) 345-364. | MR | Zbl
and ,[31] Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint 593, IMA, Minneapolis (1991).
,[32] Ph.D. thesis. Université Aix-Marseille, to appear in (2013).
,[33] Contribution à la modélisation mathématique et numérique des écoulements diphasiques constitués d'un nuage de particules dans un écoulement de gaz. Thèse d'habilitation à diriger des recherches. Université Paris VI (1995).
,[34] Analyse et Simulation Numérique par Relaxation d'Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes. Ph.D. thesis. Université Pierre et Marie Curie, Paris VI (2012).
,[35] A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425-467. | MR | Zbl
and ,[36] The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490-526. | MR | Zbl
, and ,[37] A robust numerical method for approximating solutions of a model of two-phase flows and its properties. Appl. Math. Comput. 219 (2012) 320-344. | MR | Zbl
, and ,[38] Numerical approximation for a Baer-Nunziato model of two-phase flows. Appl. Numer. Math. 61 (2011) 702-721. | MR
, and ,[39] HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573-3604. | MR
and ,[40] Glossary, Departure from Nucleate Boiling (DNB). http://www.nrc.gov/reading-rm/basic-ref/glossary/departure-from-nucleate-boiling-dnb.html.
:[41] Glossary, Loss of Coolant Accident (LOCA). http://www.nrc.gov/reading-rm/basic-ref/glossary/loss-of-coolant-accident-loca.html.
:[42] Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172 (2004) 247-266. | MR | Zbl
,Cité par Sources :