A hyperbolic model of chemotaxis on a network: a numerical study
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 1, p. 231-258
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this paper we deal with a semilinear hyperbolic chemotaxis model in one space dimension evolving on a network, with suitable transmission conditions at nodes. This framework is motivated by tissue-engineering scaffolds used for improving wound healing. We introduce a numerical scheme, which guarantees global mass densities conservation. Moreover our scheme is able to yield a correct approximation of the effects of the source term at equilibrium. Several numerical tests are presented to show the behavior of solutions and to discuss the stability and the accuracy of our approximation.

DOI : https://doi.org/10.1051/m2an/2013098
Classification:  65M06,  35L50,  92B05,  92C17,  92C42
Keywords: hyperbolic system on network, initial-boundary value problem, transmission conditions, asymptotic behavior, finite difference schemes, chemotaxis
@article{M2AN_2014__48_1_231_0,
     author = {Bretti, G. and Natalini, Roberto and Ribot, M.},
     title = {A hyperbolic model of chemotaxis on a network: a numerical study},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {1},
     year = {2014},
     pages = {231-258},
     doi = {10.1051/m2an/2013098},
     zbl = {1285.92004},
     mrnumber = {3177843},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_1_231_0}
}
Bretti, G.; Natalini, R.; Ribot, M. A hyperbolic model of chemotaxis on a network: a numerical study. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 1, pp. 231-258. doi : 10.1051/m2an/2013098. http://www.numdam.org/item/M2AN_2014__48_1_231_0/

[1] D. Aregba-Driollet, M. Briani and R. Natalini, Asymptotic high-order schemes for 2 × 2 dissipative hyperbolic systems. SIAM J. Numer. Anal. 46 (2008) 869-894. | MR 2383214 | Zbl 1176.65086

[2] V. Barocas and R. Tranquillo, An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119 (1997) 137-145.

[3] G. Bastin, J-M. Coron, B. D'Andréa-Novel, P. Suvarov, A. Vande Wouwer and A. Kienle, Stability of switched hyperbolic systems: the example of SMB chromatography” submitted IEEE-CDC (2013).

[4] G. Bretti, R. Natalini and M. Ribot, A numerical scheme for a hyperbolic relaxation model on networks. Numerical Analysis and Applied Mathematics ICNAAM 2011, AIP Conf. Proc. 1389 (2011) 1412-1415.

[5] A. Chauviere, L. Preziosi, Mathematical framework to model migration of cell population in extracellular matrix, in Cell mechanics. From single scale-based models to multiscale modeling. A. Chauviere, L. Preziosi and C. Verdier Eds., Taylor & Francis Group, CRC Press publisher, (2010) 285-318. | MR 2664209

[6] R. Dáger and E. Zuazua, Wave propagation, observation and control in 1 - d flexible multi-structures, vol. 50 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2006). | MR 2169126 | Zbl 1083.74002

[7] Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement. Numerical solution and pattern formation. J. Math. Biol. 46 (2003) 153-170; corrected version after misprinted p. 160 in J. Math. Biol. 46 (2003) 461-478. | MR 1963070 | Zbl 1062.92501

[8] F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement. J. Math. Biol. 50 (2005) 189-207. | MR 2120548 | Zbl 1080.92014

[9] A. Gamba, D. Ambrosi, A. Coniglio, A. De Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi and F. Bussolino, Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90 (2003) 118101.1-118101.4.

[10] M. Garavello and B. Piccoli, Traffic flow on networks. Conservation laws models, vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). | MR 2328174 | Zbl 1136.90012

[11] L. Gosse, Asymptotic-preserving and well-balanced schemes for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes. J. Math. Anal. Appl. 388 (2012) 964-983. | MR 2869801 | Zbl 1239.65057

[12] L. Gosse, Well-balanced numerical approximations display asymptotic decay toward Maxwellian distributions for a model of chemotaxis in a bounded interval. SIAM J. Sci. Comput. 34 (2012) A520-A545. | MR 2890276 | Zbl pre06031506

[13] J.M. Greenberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model. Trans. Amer. Math. Soc. 300 (1987) 235-258. | MR 871674 | Zbl 0622.35034

[14] I. Guaraldo, Some analytical results for hyperbolic chemotaxis model on networks Ph.D. thesis, Università di Roma “La Sapienza” (2012).

[15] F. Guarguaglini and R. Natalini, Nonlinear transmission problems for quasilinear diffusion problems. Networks and Heterogeneous media 2 (2007) 359-381. | MR 2291825 | Zbl 1121.35072

[16] F. Guarguaglini, R. Natalini, C. Mascia and M. Ribot, Stability of constant states and qualitative behavior of solutions to a one dimensional hyperbolic model of chemotaxis. Discrete Contin. Dyn. Syst. Ser. B 12 (2009) 39-76. | MR 2517584 | Zbl 1178.35058

[17] A. Häcker, A mathematical model for mesenchymal and chemosensitive cell dynamics. J. Math. Biol. 64 (2012) 361-401. | MR 2864848 | Zbl 1284.92018

[18] B. Haut and G. Bastin, A second order model of road junctions in fluid models of traffic networks. Netw. Heterog. Media 2 (2007) 227-253. | MR 2291820 | Zbl 1161.35443

[19] T. Hillen, Hyperbolic models for chemosensitive movement. Special issue on kinetic theory. Math. Mod. Methods Appl. Sci. 12 (2002) 1007-1034. | MR 1918171 | Zbl 1163.35491

[20] T. Hillen, C. Rohde and F. Lutscher, Existence of weak solutions for a hyperbolic model of chemosensitive movement. J. Math. Anal. Appl. 26 (2001) 173-199. | MR 1843975 | Zbl 0984.35043

[21] T. Hillen and A. Stevens, Hyperbolic models for chemotaxis in 1-D. Nonlinear Anal. Real World Appl. 1 (2000) 409-433. | MR 1791529 | Zbl 0981.92003

[22] O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membrane to non-electrolytes. Biochimica et Biophysica Acta 27 (1958) 229-246.

[23] E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399-415. | Zbl 1170.92306

[24] B.A.C. Harley, H. Kim, M.H. Zaman, I.V. Yannas, D.A. Lauffenburger and L.J. Gibson, Microarchitecture of Three-Dimensional Scaffolds Inuences Cell Migration Behavior via Junction Interactions. Biophys. J. 29 (2008) 4013-4024.

[25] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105 (2003) 103-165. | MR 2013508 | Zbl 1071.35001

[26] B.B. Mandal and S.C. Kundu, Cell proliferation and migration in silk broin 3D scaffolds. Biomaterials 30 (2009) 2956-2965.

[27] J.D. Murray, Mathematical biology. I. An introduction, 3rd edn., vol. 17 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York (2002); II. Spatial models and biomedical applications, 3rd edn., vol. 18 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York (2003). | MR 1908418 | Zbl 1006.92002

[28] R. Natalini, Convergence to equilibrium for the relaxation approximation of conservation laws. Commun. Pure Appl. Math. 49 (1996) 795-823. | MR 1391756 | Zbl 0872.35064

[29] R. Natalini and M. Ribot, An asymptotic high order mass-preserving scheme for a hyperbolic model of chemotaxis. SIAM J. Num. Anal. 50 (2012) 883-905. | MR 2914290 | Zbl 1248.65091

[30] B. Perthame, Transport equations in biology, Frontiers in Mathematics. Birkhäuser (2007). | MR 2270822 | Zbl 1185.92006

[31] L. Preziosi and A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58 (2009) 625-656. | MR 2471305

[32] L.A. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32 (1977) 653-665. | Zbl 0356.92009

[33] C. Spadaccio, A. Rainer, S. De Porcellinis, M. Centola, F. De Marco, M. Chello, M. Trombetta, J.A. Genovese, A G-CSF functionalized PLLA scaffold for wound repair: an in vitro preliminary study. Conf. Proc. IEEE Eng. Med. Biol. Soc. (2010).

[34] J. Valein and E. Zuazua, Stabilization of the wave equation on 1-D networks. SIAM J. Control Optim. 48 (2009) 2771-2797. | MR 2558320 | Zbl 1203.93184