A positivity preserving central scheme for shallow water flows in channels with wet-dry states
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 3, p. 665-696
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We present a high-resolution, non-oscillatory semi-discrete central scheme for one-dimensional shallow-water flows along channels with non uniform cross sections of arbitrary shape and bottom topography. The proposed scheme extends existing central semi-discrete schemes for hyperbolic conservation laws and enjoys two properties crucial for the accurate simulation of shallow-water flows: it preserves the positivity of the water height, and it is well balanced, i.e., the source terms arising from the geometry of the channel are discretized so as to balance the non-linear hyperbolic flux gradients. In addition to these, a modification in the numerical flux and the estimate of the speed of propagation, the scheme incorporates the ability to detect and resolve partially wet regions, i.e., wet-dry states. Along with a detailed description of the scheme and proofs of its properties, we present several numerical experiments that demonstrate the robustness of the numerical algorithm.

DOI : https://doi.org/10.1051/m2an/2013106
Classification:  76M12,  35L65
Keywords: hyperbolic systems of conservation and balance laws, semi-discrete schemes, Saint-Venant system of shallow water equations, non-oscillatory reconstructions, channels with irregular geometry
@article{M2AN_2014__48_3_665_0,
     author = {Balb\'as, Jorge and Hernandez-Duenas, Gerardo},
     title = {A positivity preserving central scheme for shallow water flows in channels with wet-dry states},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     year = {2014},
     pages = {665-696},
     doi = {10.1051/m2an/2013106},
     mrnumber = {3177861},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_3_665_0}
}
Balbás, Jorge; Hernandez-Duenas, Gerardo. A positivity preserving central scheme for shallow water flows in channels with wet-dry states. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 3, pp. 665-696. doi : 10.1051/m2an/2013106. http://www.numdam.org/item/M2AN_2014__48_3_665_0/

[1] R. Abgrall and S. Karni, Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31 (2009) 1603-1627. | MR 2491538 | Zbl 1188.76229

[2] L. Armi, The hydraulics of two flowing layers with different densities. J. Fluid Mech. 163 (1986) 27-58. | MR 834706

[3] L. Armi and D.M. Farmer, Maximal two-layer exchange through a contraction with barotropic net flow. J. Fluid Mech. 186 (1986) 27-51. | MR 834706 | Zbl 0587.76168

[4] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050-2065. | MR 2086830 | Zbl 1133.65308

[5] J. Balbás and S. Karni, A central scheme for shallow water flows along channels with irregular geometry. ESAIM: M2AN 43 (2009) 333-351. | Numdam | MR 2512499 | Zbl 1159.76026

[6] A. Bollermann, G. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. (2011) 1-24. | Zbl pre06206925

[7] A. Bollermann, S. Noelle and M. Lukáčová-Medvidóvá, Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10 (2011) 371-404. | MR 2799646 | Zbl 1123.76041

[8] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | MR 2128209 | Zbl 1086.65091

[9] M. Castro, J. Macías and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107-127. | Numdam | MR 1811983 | Zbl 1094.76046

[10] M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202-235. | MR 2043135 | Zbl 1087.76077

[11] M.J. Castro, A. Pardo Milanés and C. Parés, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17 (2007) 2055-2113. | MR 2371563 | Zbl 1137.76038

[12] N. Črnjarić-Žic, S. Vuković and L. Sopta, Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations. J. Comput. Phys. 200 (2004) 512-548. | MR 2095276 | Zbl 1115.76364

[13] D.M. Farmer and L. Armi, Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J. Fluid Mech. 164 (1986) 53-76. | Zbl 0587.76169

[14] P. Garcia-Navarro and M.E. Vazquez-Cendon, On numerical treatment of the source terms in the shallow water equations. Comput. Fluids 29 (2000) 951-979. | Zbl 0986.76051

[15] D.L. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J. Comput. Phys. 227 (2008) 3089-3113. | MR 2392725 | Zbl pre05255230

[16] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Review 43 (2001) 89-112. | MR 1854647 | Zbl 0967.65098

[17] G. Hernández-Dueñas and S. Karni, Shallow water flows in channels. J. Sci. Comput. 48 (2011) 190-208. | Zbl pre05936143

[18] S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: M2AN (2001) 35 631-645. | Numdam | MR 1862872 | Zbl 1001.35083

[19] S. Karni and G. Hernández-Dueñas, A scheme for the shallow water flow with area variation. AIP Conference Proceedings. Vol. 1168 of International Conference Numer. Anal. Appl. Math., Rethymno, Crete, Greece. American Institute of Physics (2009) 1433-1436.

[20] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397-425. | Numdam | MR 1918938 | Zbl 1137.65398

[21] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133-160. | MR 2310637 | Zbl 1226.76008

[22] A. Kurganov and G. Petrova, Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31 (2009) 1742-1773. | MR 2491544 | Zbl 1188.76230

[23] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. | MR 1756766 | Zbl 0987.65085

[24] R.J. Leveque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346-365. | MR 1650496 | Zbl 0931.76059

[25] S. Noelle, N. Pankratz, G. Puppo and J.R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474-499. | MR 2207248 | Zbl 1088.76037

[26] S. Noelle, Y. Xing and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226 (2007) 29-58. | MR 2356351 | Zbl 1120.76046

[27] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201-231. | MR 1890353 | Zbl 1008.65066

[28] P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms. Nonlinear hyperbolic problems (St. Etienne, 1986). In vol. 1270 of Lecture Notes in Math. Springer, Berlin (1987) 41-51. | Zbl 0626.65086

[29] G. Russo, Central schemes for balance laws. Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000). In vol. 140 of Internat. Ser. Numer. Math. Birkhäuser, Basel (2001) 821-829.

[30] B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136; J. Comput. Phys. 135 (1997) 227-248. | Zbl 0939.76063

[31] M. E. Vázquez-Cendón. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497-526. | Zbl 0931.76055

[32] S. Vuković and L. Sopta, High-order ENO and WENO schemes with flux gradient and source term balancing. In Applied mathematics and scientific computing (Dubrovnik, 2001). Kluwer/Plenum, New York (2003) 333-346. | Zbl 1017.65071

[33] Yulong Xing, Chi-Wang Shu and Sebastian Noelle, On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. 48 (2011) 339-349. | Zbl pre05936153