Multiscale Finite Element approach for “weakly” random problems and related issues
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 3, p. 815-858
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale Finite Element Method. Using numerical experiments, we demonstrate the efficiency of our approach and the computational speed-up with respect to a more standard approach. In the stationary setting, we provide a complete analysis of the approach, extending that available for the deterministic periodic setting.

DOI : https://doi.org/10.1051/m2an/2013122
Classification:  35B27,  65M60,  65M12,  35R60,  60H
Keywords: weakly stochastic homogenization, finite elements, Galerkin methods, highly oscillatory PDE
@article{M2AN_2014__48_3_815_0,
     author = {Le Bris, Claude and Legoll, Fr\'ed\'eric and Thomines, Florian},
     title = {Multiscale Finite Element approach for ``weakly'' random problems and related issues},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {3},
     year = {2014},
     pages = {815-858},
     doi = {10.1051/m2an/2013122},
     zbl = {1300.65007},
     mrnumber = {3264336},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_3_815_0}
}
Le Bris, Claude; Legoll, Frédéric; Thomines, Florian. Multiscale Finite Element approach for “weakly” random problems and related issues. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 3, pp. 815-858. doi : 10.1051/m2an/2013122. http://www.numdam.org/item/M2AN_2014__48_3_815_0/

[1] J. Aarnes and Y.R. Efendiev, Mixed multiscale finite element methods for stochastic porous media flows. SIAM J. Sci. Comput. 30 (2009) 2319-2339. | MR 2429468 | Zbl 1171.76022

[2] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209-243. | Numdam | MR 1696289 | Zbl 0922.35014

[3] G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization. SIAM Multiscale Model. Simul. 4 (2005) 790-812. | MR 2203941 | Zbl 1093.35007

[4] A. Anantharaman, Ph.D. thesis, Thèse de l'Université Paris-Est (2011). Available at http://tel.archives-ouvertes.fr/tel-00558618/fr

[5] A. Anantharaman, R. Costaouec, C. Le Bris, F. Legoll and F. Thomines, Introduction to numerical stochastic homogenization and the related computational challenges: some recent developments, in Multiscale Modeling and Analysis for Materials Simulation, vol. 22 of Lect. Notes Ser., edited by W. Bao and Q. Du. Institute for Mathematical Sciences, National University of Singapore (2011) 197-272. | MR 2895600

[6] A. Anantharaman and C. Le Bris, Homogénéisation d'un matériau périodique faiblement perturbé aléatoirement [Homogenization of a weakly randomly perturbed periodic material]. C.R. Acad. Sci. Sér. I 348 (2010) 529-534. | MR 2645167 | Zbl 1193.35008

[7] A. Anantharaman and C. Le Bris, A numerical approach related to defect-type theories for some weakly random problems in homogenization. SIAM Multiscale Model. Simul. 9 (2011) 513-544. | MR 2818410 | Zbl 1233.35014

[8] A. Anantharaman and C. Le Bris, Elements of mathematical foundations for a numerical approach for weakly random homogenization problems. Commun. Comput. Phys. 11 (2012) 1103-1143. | MR 2864078

[9] M. Avellaneda and F. H. Lin, Compactness methods in the theory of homogenization. Commun. Pure Appl. Math. 40 (1987) 803-847. | MR 910954 | Zbl 0632.35018

[10] G. Bal, J. Garnier, S. Motsch and V. Perrier, Random integrals and correctors in homogenization. Asymptot. Anal. 59 (2008) 1-26. | MR 2435670 | Zbl 1157.34048

[11] G. Bal and W. Jing, Corrector theory for MsFEM and HMM in random media. SIAM Multiscale Model. Simul. 9 (2011) 1549-1587. | MR 2861250 | Zbl 1244.65004

[12] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, vol. 5 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, New York (1978). | MR 503330 | Zbl 0404.35001

[13] X. Blanc, R. Costaouec, C. Le Bris and F. Legoll, Variance reduction in stochastic homogenization using antithetic variables. Markov Processes and Related Fields 18 (2012) 31-66. (preliminary version available at http://cermics.enpc.fr/˜legoll/hdr/FL24.pdf). | MR 2952018 | Zbl 1260.35260

[14] X. Blanc, C. Le Bris and P.-L. Lions, Une variante de la théorie de l'homogénéisation stochastique des opérateurs elliptiques [A variant of stochastic homogenization theory for elliptic operators]. C.R. Acad. Sci. Sér. I 343 (2006) 717-724. | MR 2284699 | Zbl 1103.35014

[15] X. Blanc, C. Le Bris and P.-L. Lions, Stochastic homogenization and random lattices. J. Math. Pures Appl. 88 (2007) 34-63. | MR 2334772 | Zbl 1129.60055

[16] A. Bourgeat and A. Piatnitski, Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal. 21 (1999) 303-315. | MR 1728027 | Zbl 0960.60057

[17] L. Carballal Perdiz, Etude d'une méthodologie multiéchelles appliquée à différents problèmes en milieu continu et discret (in french). Thèse de l'Université Toulouse III (2010). Available at http://thesesups.ups-tlse.fr/1170/.

[18] Z. Chen, Multiscale methods for elliptic homogenization problems, Numer. Methods Partial Differ. Eq. 22 (2006) 317-360. | MR 2201437 | Zbl 1091.65113

[19] Z. Chen, M. Cui, T. Y. Savchuk and X. Yu, The multiscale finite element method with nonconforming elements for elliptic homogenization problems. SIAM Multiscale Model. Simul. 7 (2008) 517-538. | MR 2443001 | Zbl 1191.35038

[20] Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72 (2002) 541-576. | MR 1954956 | Zbl 1017.65088

[21] Z. Chen and T.Y. Savchuk, Analysis of the multiscale finite element method for nonlinear and random homogenization problems. SIAM J. Numer. Anal. 46 (2008) 260-279. | MR 2377263 | Zbl 1170.35007

[22] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978). | MR 520174 | Zbl 0511.65078

[23] D. Cioranescu and P. Donato, An introduction to homogenization. In vol. 17 of Oxford Lect. Ser. Math. Appl. The Clarendon Press, Oxford University Press, New York (1999). | MR 1765047 | Zbl 0939.35001

[24] R. Costaouec, Asymptotic expansion of the homogenized matrix in two weakly stochastic homogenization settings. Appl. Math. Res. Express 2012 (2012) 76-104. | MR 2900147 | Zbl 1243.65007

[25] R. Costaouec, C. Le Bris and F. Legoll, Approximation numérique d'une classe de problèmes en homogénéisation stochastique [Numerical approximation of a class of problems in stochastic homogenization]. C.R. Acad. Sci. Série I 348 (2010) 99-103. | MR 2586753 | Zbl 1180.65166

[26] P. Dostert, Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput. Methods Appl. Mechanics Engrg. 197 (2008) 3445-3455. | MR 2449167 | Zbl 1194.76112

[27] W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87-132. | MR 1979846 | Zbl 1093.35012

[28] W. E and B. Engquist, The Heterogeneous Multiscale Method for homogenization problems, in Multiscale Methods in Science and Engineering, vol. 44, Lect. Notes Comput. Sci. Engrg. Springer, Berlin (2005) 89-110. | Zbl 1086.65521

[29] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2 (2007) 367-450. | MR 2314852 | Zbl 1164.65496

[30] Y.R. Efendiev and T.Y. Hou, Multiscale finite element methods: theory and applications, Surveys and tutorials in the applied mathematical sciences. Springer, New York (2009). | MR 2477579 | Zbl 1163.65080

[31] Y.R. Efendiev, T.Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2 (2004) 553-589. | MR 2119929 | Zbl 1083.65105

[32] Y.R. Efendiev, T.Y. Hou and X.-H. Wu, Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37 (2000) 888-910. | MR 1740386 | Zbl 0951.65105

[33] FreeFEM, http://www.freefem.org

[34] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, reprint of the 1998 edn., Classics in Mathematics. Springer (2001). | MR 1814364 | Zbl 1042.35002

[35] V. Ginting, A. Malqvist and M. Presho, A novel method for solving multiscale elliptic problems with randomly perturbed data. SIAM Multiscale Model. Simul. 8 (2010) 977-996. | MR 2644320 | Zbl 1200.65005

[36] A. Gloria, An analytical framework for numerical homogenization. Part II: Windowing and oversampling. SIAM Multiscale Model. Simul. 7 (2008) 274-293. | MR 2399546 | Zbl 1156.74362

[37] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | MR 1455261 | Zbl 0880.73065

[38] T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68 (1999) 913-943. | MR 1642758 | Zbl 0922.65071

[39] T.Y. Hou, X.-H. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci. 2 (2004) 185-205. | MR 2119937 | Zbl 1085.65109

[40] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag (1994). | MR 1329546 | Zbl 0801.35001

[41] C. Le Bris, Some numerical approaches for “weakly” random homogenization, Numerical Mathematics and Advanced Applications 2009, in Proc. of ENUMATH 2009. Edited by G. Kreiss et al. Springer Lect. Ser. Notes Comput. Sci. Engrg. (2010) 29-45. | Zbl pre05896752

[42] C. Le Bris, F. Legoll and F. Thomines, Rate of convergence of a two-scale expansion for some weakly stochastic homogenization problems. Asymptot. Anal. 80 (2012) 237-267. | MR 3025045 | Zbl 1264.35022

[43] F. Legoll and F. Thomines, On a variant of random homogenization theory: convergence of the residual process and approximation of the homogenized coefficients. ESAIM: M2AN 48 (2014) 347-386. | Numdam | MR 3177849 | Zbl pre06333649

[44] A. Lozinski, Habilitation à Diriger des Recherches, Université Paul Sabatier, Toulouse (2010). Available at http://www.math.univ-toulouse.fr/.

[45] Y. Maday, Reduced basis method for the rapid and reliable solution of partial differential equations, in vol. III of Intern. Congress of Math., Eur. Math. Soc. Zürich (2006) 1255-1270. | MR 2275727 | Zbl 1100.65079

[46] Y. Mittal, Limiting behavior of maxima in stationary Gaussian sequences. Ann. Probab. 2 (1974) 231-242. | MR 372979 | Zbl 0279.60025

[47] G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, in vol. 10 of Proc. Colloq. on Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, 1979. Edited by J. Fritz, J.L. Lebaritz and D. Szasz. Colloquia Mathematica Societ. J. Bolyai, North-Holland (1981) 835-873. | MR 712714 | Zbl 0499.60059

[48] L. Tartar, Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, vol. 31 of Progr. Nonlinear Differ. Equ. Appl., edited by A. Cherkaev and R. Kohn. Birkhäuser (1987). | Zbl 0920.35018