The aim of this paper is to give a simple, introductory presentation of the extension of the Virtual Element Method to the discretization of H(div)-conforming vector fields (or, more generally, of (n - 1) - Cochains). As we shall see, the methods presented here can be seen as extensions of the so-called BDM family to deal with more general element geometries (such as polygons with an almost arbitrary geometry). For the sake of simplicity, we limit ourselves to the 2-dimensional case, with the aim of making the basic philosophy clear. However, we consider an arbitrary degree of accuracy k (the Virtual Element analogue of dealing with polynomials of arbitrary order in the Finite Element Framework).
Mots clés : mixed formulations, virtual elements, polygonal meshes, polyhedral meshes
@article{M2AN_2014__48_4_1227_0, author = {Brezzi, F. and Falk, Richard S. and Donatella Marini, L.}, title = {Basic principles of mixed {Virtual} {Element} {Methods}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1227--1240}, publisher = {EDP-Sciences}, volume = {48}, number = {4}, year = {2014}, doi = {10.1051/m2an/2013138}, mrnumber = {3264352}, zbl = {1299.76130}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013138/} }
TY - JOUR AU - Brezzi, F. AU - Falk, Richard S. AU - Donatella Marini, L. TI - Basic principles of mixed Virtual Element Methods JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1227 EP - 1240 VL - 48 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013138/ DO - 10.1051/m2an/2013138 LA - en ID - M2AN_2014__48_4_1227_0 ER -
%0 Journal Article %A Brezzi, F. %A Falk, Richard S. %A Donatella Marini, L. %T Basic principles of mixed Virtual Element Methods %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1227-1240 %V 48 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013138/ %R 10.1051/m2an/2013138 %G en %F M2AN_2014__48_4_1227_0
Brezzi, F.; Falk, Richard S.; Donatella Marini, L. Basic principles of mixed Virtual Element Methods. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1227-1240. doi : 10.1051/m2an/2013138. http://archive.numdam.org/articles/10.1051/m2an/2013138/
[1] Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376-391. | MR
, , , and ,[2] Approximation by quadrilateral finite elements. Math. Comput. 71 (2002) 909-922. | MR | Zbl
, and ,[3] Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429-2451. | MR | Zbl
, and ,[4] The basic principles of Virtual Elements Methods. Math. Models Methods Appl. Sci. 23 (2013) 199-214. | MR
, , , , and ,[5] Virtual Elements for linear elasticity problems. SIAM J. Num. Anal. 51 (2013) 794-812. | MR | Zbl
, and ,[6] Mixed Virtual Element Methods in three dimensions. In preparation.
, , and ,[7] Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325-356. | MR | Zbl
, and ,[8] Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes. SIAM J. Numer. Anal. 49 (2011) 1737-1760. | MR | Zbl
, and ,[9] A higher-order formulation of the Mimetic Finite Difference Method SIAM J. Sci. Comput. 31 (2008) 732-760. | MR | Zbl
and ,[10] Principle of mimetic discretizations of differential operators, Compatible discretizations. In vol. 142 of Proc. of IMA hot topics workshop on compatible discretizations. Edited by D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov. Springer-Verlag (2006). | MR | Zbl
and ,[11] Mixed Finite Element Methods and Applications. Springer-Verlag, New York (2013). | MR | Zbl
, and ,[12] The mathematical theory of finite element methods. In vol. 15 of Texts Appl. Math. Springer-Verlag, New York (2008). | MR | Zbl
and ,[13] Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277-295. | Numdam | MR | Zbl
, and ,[14] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
and ,[15] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Num. Anal. 43 (2005) 1872-1896. | MR | Zbl
, and ,[16] A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Meth. Appl. Mech. Engrg. 196 (2007) 3682-3692. | MR | Zbl
, , and ,[17] A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 533-1553. | MR | Zbl
, and ,[18] Virtual elements for plate bending problems. Comput. Meth. Appl. Mech. Engrg. 253 (2013) 155-462. | MR | Zbl
and ,[19] Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47 (2009) 2612-2637. | MR | Zbl
, and ,[20] The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR | Zbl
,[21] Mixed finite element methods for second order elliptic problems. Math. Appl. Comput. 1 (1982) 91-103. | MR | Zbl
and ,[22] A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. (M3AS) 20 (2010) 265-295. | MR | Zbl
, , and ,[23] Supernatural QUAD4: A template formulation Comput. Methods Appl. Mech. Engrg. 195 (2006) 5316-5342. | MR | Zbl
,[24] The extended/generalized finite element method: An overview of the method and its applications Int, J. Numer. Meth. Engng. 84 (2010) 253-304. | MR | Zbl
and ,[25] Phase-field based topology optimization with polygonal elements: a finite volume approach for the evolution equation. Struct. Multidiscip. Optim. (2012) 4632-7342. | MR | Zbl
and ,[26] High-order mimetic finite difference method for diffusion problems on polygonal meshes. J. Comput. Phys. 227 (2008) 8841-8854. | MR | Zbl
and ,[27] The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36 (1999) 788-818. | MR | Zbl
and ,[28] New mixed finite element method on polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 18 (2003) 261-278. | MR | Zbl
and ,[29] Higher order BEM-based FEM on polygonal meshes. SIAM J. Numer. Anal. 50 (2012) 2357-2378. | MR | Zbl
and ,[30] Conforming polygonal finite elements. Int. J. Numer. Meth. Engrg. 61 (2004) 2045-2066. | MR | Zbl
and ,[31] Extended finite element method on polygonal and quadtree meshes. Comput. Methods Appl. Mech. Engrg. 197 (2007) 425-438. | MR | Zbl
and ,[32] Honeycomb Wachspress finite elements for structural topology optimization. Struct. Multidiscip. Optim. 37 (2009) 569-583. | MR | Zbl
, and ,[33] A rational Finite Element Basis. Academic Press, New York (1975). | MR | Zbl
,Cité par Sources :