The periodic unfolding method for a class of parabolic problems with imperfect interfaces
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 5, p. 1279-1302
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector problems for the parabolic problem in a two-component composite with ε-periodic connected inclusions. The condition imposed on the interface is that the jump of the solution is proportional to the conormal derivative via a function of order εγ with γ ≤ -1. We give the homogenization results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189-222]. We also get the corrector results.

DOI : https://doi.org/10.1051/m2an/2013139
Classification:  35B27,  35K20,  82B24
Keywords: periodic unfolding method, heat equation, interface problems, homogenization, correctors
@article{M2AN_2014__48_5_1279_0,
     author = {Yang, Zhanying},
     title = {The periodic unfolding method for a class of parabolic problems with imperfect interfaces},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {5},
     year = {2014},
     pages = {1279-1302},
     doi = {10.1051/m2an/2013139},
     mrnumber = {3264354},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_5_1279_0}
}
Yang, Zhanying. The periodic unfolding method for a class of parabolic problems with imperfect interfaces. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 5, pp. 1279-1302. doi : 10.1051/m2an/2013139. http://www.numdam.org/item/M2AN_2014__48_5_1279_0/

[1] S. Brahim-Otsman, G.A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197-231. | MR 1172450 | Zbl 0837.35016

[2] D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford University Press (1999). | MR 1765047 | Zbl 0939.35001

[3] D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44 (2012) 718-760. | MR 2914248 | Zbl 1250.49017

[4] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C.R. Acad. Sci., Paris, Sér. I, Math. 335 (2002) 99-104. | MR 1921004 | Zbl 1001.49016

[5] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585-1620. | MR 2466168 | Zbl 1167.49013

[6] D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006) 467-496. | MR 2287278 | Zbl 1119.49014

[7] H.S. Carslaw and J.C. Jaeger, Conduction of heat in solids. Clarendon Press, Oxford (1947). | MR 22294 | Zbl 0029.37801

[8] P. Donato, Some corrector results for composites with imperfect interface. Rend. Mat. Appl., VII. Ser. 26 (2006) 189-209. | MR 2275293 | Zbl 1129.35008

[9] P. Donato, L. Faella and S Monsurrò, Homogenization of the wave equation in composites with imperfect interface: A memory effect. J. Math. Pures Appl. 87 (2007) 119-143. | MR 2296803 | Zbl 1112.35017

[10] P. Donato, L. Faella and S. Monsurrò, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. 40 (2009) 1952-1978. | MR 2471907 | Zbl 1197.35029

[11] P. Donato and E.C. Jose, Corrector results for a parabolic problem with a memory effect. ESAIM: M2AN 44 (2010) 421-454. | Numdam | MR 2666650 | Zbl 1195.35038

[12] P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2 (2004) 247-273. | MR 2070449 | Zbl 1083.35014

[13] P. Donato, K.H. Le Nguyen and R. Tardieu, The periodic unfolding method for a class of imperfect transmission problems. J. Math. Sci. 176 (2011) 891-927. | MR 2838982 | Zbl 1290.35018

[14] P. Donato and A. Nabil, Homogenization and correctors for the heat equation in perforated domains. Ricerche Mat. 50 (2001) 115-144. | MR 1941824 | Zbl 1102.35305

[15] P. Donato and Z. Yang, The periodic unfolding method for the wave equations in domains with holes. Adv. Math. Sci. Appl. 22 (2012) 521-551. | MR 3100008 | Zbl 1295.35043

[16] L. Faella and S. Monsurrò, Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107-121. | MR 2313177 | Zbl 1114.74048

[17] F. Gaveau, Homogénéisation et correcteurs pour quelques problèmes hyperboliques, Ph.D. Thesis, University of Paris VI, France (2009).

[18] E.C. Jose, Homogenization of a parabolic problem with an imperfect interface. Rev. Roum. Math. Pures Appl. 54 (2009) 189-222. | MR 2562269 | Zbl 1199.35015

[19] S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (2003) 43-63. | MR 2002395 | Zbl 1052.35022

[20] S. Monsurrò, Erratum for the paper Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 14 (2004) 375-377. | MR 2083635 | Zbl 1069.35500

[21] L. Tartar, Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar, 1976. Jpn. Soc. Promot. Sci. (1978) 468-482.