Scalar boundary value problems on junctions of thin rods and plates
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) no. 5, p. 1495-1528
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
We derive asymptotic formulas for the solutions of the mixed boundary value problem for the Poisson equation on the union of a thin cylindrical plate and several thin cylindrical rods. One of the ends of each rod is set into a hole in the plate and the other one is supplied with the Dirichlet condition. The Neumann conditions are imposed on the whole remaining part of the boundary. Elements of the junction are assumed to have contrasting properties so that the small parameter, i.e. the relative thickness, appears in the differential equation, too, while the asymptotic structures crucially depend on the contrastness ratio. Asymptotic error estimates are derived in anisotropic weighted Sobolev norms.
DOI : https://doi.org/10.1051/m2an/2014007
Classification:  35B40,  35C20,  74K30
@article{M2AN_2014__48_5_1495_0,
     author = {Bunoiu, R. and Cardone, G. and Nazarov, S. A.},
     title = {Scalar boundary value problems on junctions of thin rods and plates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {5},
     year = {2014},
     pages = {1495-1528},
     doi = {10.1051/m2an/2014007},
     mrnumber = {3264363},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_5_1495_0}
}
Bunoiu, R.; Cardone, G.; Nazarov, S. A. Scalar boundary value problems on junctions of thin rods and plates. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 48 (2014) no. 5, pp. 1495-1528. doi : 10.1051/m2an/2014007. http://www.numdam.org/item/M2AN_2014__48_5_1495_0/

[1] A.A. Arsen'Ev, The existence of resonance poles and resonances under scattering in the case of boundary conditions of the second and third kind.Ž. Vyčisl. Mat. i Mat. Fiz. 16 (1976) 718-724. | MR 418653 | Zbl 0329.35020

[2] J. Beale, Thomas Scattering frequencies of reasonators. Commun. Pure Appl. Math. 26 (1973) 549-563. | MR 352730 | Zbl 0254.35094

[3] L. Berlyand, G. Cardone, Y. Gorb and G.P. Panasenko, Asymptotic analysis of an array of closely spaced absolutely conductive inclusions. Netw. Heterog. Media 1 (2006) 353-377. | MR 2247782 | Zbl 1116.35310

[4] D. Blanchard, A. Gaudiello and G. Griso, Junction of a periodic family of elastic rods with a 3d plate. I. J. Math. Pures Appl. 88 (2007) 1-33. | MR 2334771 | Zbl 1116.74038

[5] D. Blanchard, A. Gaudiello and G. Griso, Junction of a periodic family of elastic rods with a thin plate. II. J. Math. Pures Appl. 88 (2007) 149-190. | MR 2348767 | Zbl 1127.74025

[6] D. Blanchard and G. Griso, Microscopic effects in the homogenization of the junction of rods and a thin plate. Asymptot. Anal. 56 (2008) 1-36. | MR 2376221 | Zbl 1173.35332

[7] D. Blanchard and G. Griso, Asymptotic behavior of a structure made by a plate and a straight rod. Chin. Annal. Math. Ser. B 34 (2013) 399-434. | MR 3048668

[8] D. Borisov, R. Bunoiu and G. Cardone, On a waveguide with frequently alternating boundary conditions: homogenized Neumann condition. Annal. Henri Poincaré 11 (2010) 1591-1627. | MR 2769705 | Zbl 1210.82077

[9] D. Borisov, R. Bunoiu and G. Cardone, Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows. J. Math. Sci. 176 (2011) 774-785. | MR 2838974 | Zbl 1290.81038

[10] D. Borisov and R. Bunoiu, Cardone G., On a waveguide with an infinite number of small windows. C. R. Math. Acad. Sci. Paris, Ser. I 349 (2011) 53-56. | MR 2755696 | Zbl 1211.35098

[11] D. Borisov, R. Bunoiu and G. Cardone, Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics. Z. Angew. Math. Phys. 64 (2013) 439-472. | MR 3068832 | Zbl 1282.35033

[12] D. Borisov and G. Cardone, Homogenization of the planar waveguide with frequently alternating boundary conditions. J. Phys. A: Math. Theor. 42 (2009) 365-205. | MR 2534513 | Zbl 1178.81088

[13] D. Borisov and G. Cardone, Complete asymptotic expansions for the eigenvalues of the Dirichlet Laplacian in thin three-dimensional rods. ESAIM: COCV 17 (2011) 887-908. | Numdam | MR 2826984 | Zbl 1223.35248

[14] D. Borisov and G. Cardone, Planar Waveguide with “Twisted” Boundary Conditions: Small Width. J. Math. Phys. 53 (2012) 023-503. | MR 2920471 | Zbl 1274.81108

[15] D. Borisov, G. Cardone, L. Faella and C. Perugia, Uniform resolvent convergence for strip with fast oscillating boundary. J. Differ. Eqs. 255 (2013) 4378-4402. | MR 3105925 | Zbl 1286.35025

[16] G. Cardone, A. Corbo Esposito and G.P. Panasenko, Asymptotic partial decomposition for diffusion with sorption in thin structures. Nonlinear Anal. 65 (2006) 79-106. | MR 2226260 | Zbl 1103.35029

[17] G. Cardone, A. Corbo Esposito and S.E. Pastukhova, Homogenization of a scalar problem for a combined structure with singular or thin reinforcement. Z. Anal. Anwend. 26 (2007) 277-301. | MR 2322834 | Zbl 1156.35312

[18] G. Cardone, R. Fares and G.P. Panasenko, Asymptotic expansion of the solution of the steady Stokes equation with variable viscosity in a two-dimensional tube structure. J. Math. Phys. 53 (2012) 103-702. | MR 3050619 | Zbl pre06245381

[19] G. Cardone, G.P. Panasenko and Y. Sirakov, Asymptotic analysis and numerical modeling of mass transport in tubular structures. Math. Models Methods Appl. Sci. 20 (2010) 397-421. | MR 2647026 | Zbl 1200.35021

[20] G. Cardone, S.A. Nazarov and A.L. Piatnitski, On the rate of convergence for perforated plates with a small interior Dirichlet zone. Z. Angew. Math. Phys. 62 (2011) 439-468. | MR 2803480 | Zbl 1264.74189

[21] P.G. Ciarlet, Mathematical elasticity. Vol. II. Theory of plates. Studies Math. Appl. 27 (1997). | MR 1477663 | Zbl 0953.74004

[22] D. Cioranescu, O.A. Oleĭnik and G. Tronel, Korn's inequalities for frame type structures and junctions with sharp estimates for the constants. Asymptot. Anal. 8 (1994) 1-14. | MR 1265122 | Zbl 0791.73010

[23] D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Appl. Math. Sci. 136 (1999). | MR 1676922 | Zbl 0929.35002

[24] R.R. Gadyl'Shin, On the eigenvalues of a dumbbell with a thin handle. Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005) 45-110; Izv. Math. 69 (2005) 265-329. | MR 2136257 | Zbl 1075.35023

[25] A. Gaudiello, R. Monneau, J. Mossino, F. Murat and A. Sili, Junction of elastic plates and beams. ESAIM: COCV 13 (2007) 419-457. | Numdam | MR 2329170 | Zbl 1133.35322

[26] A. Gaudiello and A. Sili, Asymptotic analysis of the eigenvalues of a Laplacian problem in a thin multidomain. Indiana Univ. Math. J. 56 (2007) 1675-1710. | MR 2354696 | Zbl 1226.49044

[27] A. Gaudiello and A. Sili, Asymptotic analysis of the eigenvalues of an elliptic problem in an anisotropic thin multidomain. Proc. Roy. Soc. Edinburgh Sect. A 141 (2011) 739-754. | MR 2819710 | Zbl 1220.35173

[28] I. Gruais, Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée. RAIRO Modél. Math. Anal. Numér. 27 (1993) 77-105. | Numdam | MR 1204630 | Zbl 0767.73034

[29] I. Gruais, Modeling of the junction between a plate and a rod in nonlinear elasticity. Asymptot. Anal. 7 (1993) 179-194. | MR 1226973 | Zbl 0788.73040

[30] A.M. Il'In, A boundary value problem for an elliptic equation of second order in a domain with a narrow slit. I. The two-dimensional case. Mat. Sb. 99 (1976) 514-537. | MR 407439 | Zbl 0381.35028

[31] Il'In A.M., Matching of asymptotic expansions of solutions of boundary value problems. Moscow, Nauka (1989); Translations: Math. Monogr., vol. 102. AMS, Providence (1992). | MR 1007834 | Zbl 0754.34002

[32] P. Joly and S. Tordeux. Matching of asymptotic expansions for waves propagation in media with thin slots II: The error estimates. ESAIM: M2AN 42 (2008) 193-221. | Numdam | MR 2405145 | Zbl 1132.35348

[33] V.A. Kondratiev, Boundary problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16 (1967) 209−292; Trans. Moscow Math. Soc. 16 (1967) 227−313. | MR 226187 | Zbl 0194.13405

[34] V. Kozlov, V. Maz'Ya and A. Movchan, Asymptotic analysis of fields in multi-structures. Oxford Math. Monogr. Oxford University Press (1999). | MR 1860617 | Zbl 0951.35004

[35] V.A. Kozlov, V.G. Maz'Ya and A.B. Movchan, Asymptotic analysis of a mixed boundary value problem in a multi-structure. Asymptot. Anal. 8 (1994) 105-143. | MR 1288812 | Zbl 0812.35019

[36] V.A. Kozlov, V.G. Maz'Ya and A.B. Movchan, Asymptotic representation of elastic fields in a multi-structure. Asymptot. Anal. 11 (1995) 343-415. | MR 1388837 | Zbl 0846.73009

[37] V.A. Kozlov, V.G. Maz'Ya and A.B. Movchan, Fields in non-degenerate 1D-3D elastic multi-structures. Quart. J. Mech. Appl. Math. 54 (2001) 177-212. | MR 1832468 | Zbl 0988.74014

[38] O.A. Ladyzhenskaya, The boundary value problems of mathematical physics. Moscow, Nauka (1973); Appl. Math. Sci., vol. 49. Springer-Verlag, New York (1985). | MR 793735

[39] N.S. Landkof, Foundations of modern potential theory. Die Grundlehren der mathematischen Wissenschaften, vol. 180. Springer-Verlag, New York-Heidelberg (1972). | MR 350027 | Zbl 0253.31001

[40] H. Le Dret, Problèmes variationnels dans le multi-domaines: modélisation des jonctions et applications. Res. Appl. Math., vol. 19. Masson, Paris (1991). | MR 1130395 | Zbl 0744.73027

[41] D. Leguillon and E. Sanchez-Palencia, Approximation of a two-dimensional problem of junction. Comput. Mech. 6 (1990) 435-455. | Zbl 0736.73042

[42] J.L. Lions, Magenes E., Non-homogeneous boundary value problems and applications. Springer-Verlag, New York-Heidelberg (1972). | Zbl 0223.35039

[43] J.-L. Lions, Some more remarks on boundary value problems and junctions. Proc. of Asymptotic methods for elastic structures, Lisbon 1993. De Gruyter, Berlin (1995) 103-118. | MR 1333206 | Zbl 0829.73052

[44] V.G. Maz'Ya, S.A. Nazarov and B.A. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Tbilisi Univ. 1981; Operator Theory. Adv. Appl., vol. 112. Birkhäuser, Basel (2000). | Zbl 1127.35301

[45] S.A. Nazarov, Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates, vol. 1. Nauchnaya Kniga, Novosibirsk (2001).

[46] S.A. Nazarov, Selfadjoint extensions of the operator of the Dirichlet problem in weighted function spaces. Mat. Sb. 137 (1988) 224-241; Math. USSR-Sb. 65 (1990) 229-247. | MR 971695 | Zbl 0683.35033

[47] S.A. Nazarov, Asymptotic behavior of the solution of a boundary value problem in a thin cylinder with a nonsmooth lateral surface. Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993) 202-239; Russian Acad. Sci. Izv. Math. 42 (1994) 183-217. | MR 1220589 | Zbl 0807.35031

[48] S.A. Nazarov, Junctions of singularly degenerating domains with different limit dimensions. I. Tr. Semin. im. I. G. Petrovskogo 18 (1995) 3-78; J. Math. Sci. 80 (1996) 1989-2034. | MR 1425043 | Zbl 0862.35027

[49] S.A. Nazarov, Korn's inequalities for junctions of bodies and thin rods. Math. Meth. Appl. Sci. 20 (1997) 219-243. | MR 1430494 | Zbl 0880.35040

[50] S.A. Nazarov, Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions. Proc. St. Petersburg Math. Society, V, 77-125; Amer. Math. Soc. Transl. Ser. 2, 193, Amer. Math. Soc., Providence (1999). | MR 1736907 | Zbl 0968.35038

[51] S.A. Nazarov, Asymptotic expansions at infinity of solutions of a problem in the theory of elasticity in a layer. Tr. Mosk. Mat. Obs. 60 (1999) 3-97; Trans. Moscow Math. Soc. (1999) 1-85. | MR 1702684 | Zbl 0944.74011

[52] S.A. Nazarov, Junctions of singularly degenerating domains with different limit dimensions. II. Tr. Semin. im. I. G. Petrovskogo 20 (2000) 155-195; 312-313; J. Math. Sci. 97 (1999) 155-195. | MR 1846015 | Zbl 0976.35013

[53] S.A. Nazarov, Asymptotic analysis and modeling of the junction of a massive body and thin rods. Tr. Semin. im. I. G. Petrovskogo 24 (2004) 95-214, 342-343; J. Math. Sci. 127 (2005) 2192-2262. | MR 2360841 | Zbl 1145.74390

[54] S.A. Nazarov, Estimates for the accuracy of modeling boundary value problems on the junction of domains with different limit dimensions. Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004) 119-156; Izv. Math. 68 (2004) 1179-1215. | MR 2108526 | Zbl 1167.35343

[55] S.A. Nazarov, Elliptic boundary value problems on hybrid domains. Funktsional. Anal. i Prilozhen 38 (2004) 55-72; Funct. Anal. Appl. 38 (2004) 283-297. | MR 2117508 | Zbl 1127.35328

[56] S.A. Nazarov, Korn's inequalities for elastic joints of massive bodies, thin plates, and rods. Uspekhi Mat. Nauk 63 (2008) 379, 37-110; Russian Math. Surveys 63 (2008) 35-107. | MR 2406182 | Zbl 1155.74027

[57] S.A. Nazarov, Asymptotic behavior of the solutions of the spectral problem of the theory of elasticity for a three-dimensional body with a thin coupler. Sibirsk. Mat. Zh. 53 (2012) 345-364; Sib. Math. J. 53 (2012) 274-290. | MR 2975940 | Zbl pre06105679

[58] S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries. Moscow: Nauka. (1991); de Gruyter Expositions Math., vol. 13. Walter de Gruyter & Co., Berlin (1994). | MR 1283387 | Zbl 0806.35001

[59] G.P. Panasenko, Multi-scale Modeling for Structures and Composites. Springer, Dordrecht (2005). | MR 2133084

[60] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annal. Math. Studies, vol. 27, Princeton University Press, Princeton (1951). | Zbl 0044.38301

[61] J. Sanchez-Hubert, Sanchez-Palencia E., Coques élastiques minces. Propriétés asymptotiques. Recherches en Mathématiques Appliquées. Paris, Masson (1997). | Zbl 0881.73001

[62] V.I. Smirnov, A course of higher mathematics. Advanced calculus, vol. II. Sneddon Pergamon Press, London (1964). | Zbl 0121.25904

[63] V.I. Smirnov, A course of higher mathematics. Integral equations and partial differential equations, vol. IV. Sneddon Pergamon Press, London (1964). | Zbl 0121.25904

[64] M. Van Dyke, Perturbation methods in fluid mechanics. Appl. Math. Mech., vol. 8 Academic Press, New York, London (1964). | MR 176702 | Zbl 0329.76002

[65] V.S. Vladimirov, Generalized Functions in Mathematical Physics, Mir Moscow (1979). | MR 564116 | Zbl 0515.46034