Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 6, p. 1639-1679
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce two variants of a numerical scheme based on the method of characteristics to simulate this model. We study and verify numerically the properties of these schemes. We finally present numerical simulations of a loss of flow accident (LOFA) induced by a coolant pump trip event.

DOI : https://doi.org/10.1051/m2an/2014015
Classification:  35Q35,  35Q79,  65M25,  76T10
Keywords: low Mach number flows, modelling of phase transition, analytical solutions, method of characteristics, positivity-preserving schemes
@article{M2AN_2014__48_6_1639_0,
     author = {Bernard, Manuel and Dellacherie, St\'ephane and Faccanoni, Gloria and Grec, B\'er\'enice and Penel, Yohan},
     title = {Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {6},
     year = {2014},
     pages = {1639-1679},
     doi = {10.1051/m2an/2014015},
     mrnumber = {3264368},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_6_1639_0}
}
Bernard, Manuel; Dellacherie, Stéphane; Faccanoni, Gloria; Grec, Bérénice; Penel, Yohan. Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 6, pp. 1639-1679. doi : 10.1051/m2an/2014015. http://www.numdam.org/item/M2AN_2014__48_6_1639_0/

[1] TRACE V5.0 Theory Manual, Field Equations, Solution Methods and Physical Models. Technical report, U.S. Nuclear Regulatory Commission (2008).

[2] A. Acrivos, Method of characteristics technique. Application to heat and mass transfer problems. Ind. Eng. Chem. 48 (1956) 703-710.

[3] G. Allaire, G. Faccanoni and S. Kokh, A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris Ser. I 344 (2007) 135-140. | MR 2288604 | Zbl 1109.35066

[4] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. I. hydrodynamics. Astrophys. J. 637 (2006) 922.

[5] A.S. Almgren, J.B. Bell, C.A. Rendleman and M. Zingale, Low Mach number modeling of type Ia supernovae. II. energy evolution. Astrophys. J. 649 (2006) 927.

[6] M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec, O. Lafitte, T.-T. Nguyen and Y. Penel. Study of low Mach nuclear core model for single-phase flow. ESAIM Proc. 38 (2012) 118-134. | MR 3006539

[7] D. Bestion. The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229-245.

[8] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics. 2nd edition. John Wiley and sons (1985). | Zbl 0095.23301

[9] V. Casulli and D. Greenspan, Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Methods Fluids 4 (1984) 1001-1012. | Zbl 0549.76050

[10] S. Clerc, Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows. J. Comput. Phys. 181 (2002) 577-616. | MR 1762085 | Zbl 1169.76407

[11] P. Colella and K. Pao, A projection method for low speed flows. J. Comput. Phys. 149 (1999) 245-269. | MR 1672739 | Zbl 0935.76056

[12] J.M. Delhaye, Thermohydraulique des réacteurs. EDP sciences (2008).

[13] S. Dellacherie, On a diphasic low Mach number system. ESAIM: M2AN 39 (2005) 487-514. | Numdam | MR 2157147 | Zbl 1075.35038

[14] S. Dellacherie, Numerical resolution of a potential diphasic low Mach number system. J. Comput. Phys. 223 (2007) 151-187. | MR 2314387 | Zbl 1163.76035

[15] S. Dellacherie, Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978-1016. | MR 2576236 | Zbl pre05668155

[16] S. Dellacherie, On a low Mach nuclear core model. ESAIM Proc. 35 (2012) 79-106. | MR 3040775 | Zbl pre06023187

[17] S. Dellacherie, G. Faccanoni, B. Grec, F. Lagoutière, E. Nayir and Y. Penel, 2D numerical simulation of a low Mach nuclear core model with stiffened gas using Freefem++. ESAIM. Proc. (accepted).

[18] S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Study of low Mach nuclear core model for two-phase flows with phase transition II: tabulated EOS. In preparation.

[19] M. Drouin, O. Grégoire and O. Simonin, A consistent methodology for the derivation and calibration of a macroscopic turbulence model for flows in porous media. Int. J. Heat Mass Transfer 63 (2013) 401-413.

[20] D.R. Durran, Numerical methods for fluid dynamics, With applications to Geophysics, vol. 32 of Texts in Applied Mathematics. Springer, 2nd edition. New York (2010). | MR 2723959 | Zbl 1214.76001

[21] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differ. Equ. 12 (1987) 1227-1283. | MR 888460 | Zbl 0632.76075

[22] G. Faccanoni, Étude d'un modèle fin de changement de phase liquide-vapeur. Contribution à l'étude de la crise d'ébullition. Ph.D. thesis, École Polytechnique, France (2008).

[23] G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 1029-1054 2012. | Numdam | MR 2916371 | Zbl 1267.76110

[24] P. Fillion, A. Chanoine, S. Dellacherie and A. Kumbaro, FLICA-OVAP: A new platform for core thermal-hydraulic studies. Nucl. Eng. Des. 241 (2011) 4348-4358.

[25] E. Goncalvès and R.F. Patella, Numerical study of cavitating flows with thermodynamic effect. Comput. Fluids 39 (2010) 99-113. | MR 2600812 | Zbl 1242.76331

[26] J.M. Gonzalez-Santalo and R.T. Jr Lahey, An exact solution for flow transients in two-phase systems by the method of characteristics. J. Heat Transfer 95 (1973) 470-476.

[27] W. Greiner, L. Neise and H. Stöcker, Thermodynamics and statistical mechanics. Springer (1997). | Zbl 0823.73001

[28] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63-86. | MR 1651839 | Zbl 0963.76062

[29] S. Jaouen, Étude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris 6, France (2001).

[30] M.F. Lai, J.B. Bell and P. Colella. A projection method for combustion in the zero Mach number limit, in Proc. of 11th AIAA Comput. Fluid Dyn. Conf. (1993) 776-783.

[31] O. Le Métayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43 (2004) 265-276,.

[32] O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567-610. | MR 2134994 | Zbl 1088.76051

[33] E.W. Lemmon, M.O. Mclinden and D.G. Friend, Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, Gaithersburg MD, 20899.

[34] A. Majda and K.G. Lamb, Simplified equations for low Mach number combustion with strong heat release, Dynamical issues in combustion theory, vol. 35 of IMA Vol. Math. Appl. Springer-Verlag (1991). | MR 1119793 | Zbl 0751.76068

[35] A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42 (1985) 185-205.

[36] R. Menikoff and B.J. Plohr, The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61 (1989) 75-130. | MR 977944 | Zbl 1129.35439

[37] S. Müller and A. Voss, The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput. 28 (2006) 651-681. | MR 2231725 | Zbl 1114.35127

[38] Y. Penel, An explicit stable numerical scheme for the 1D transport equation. Discrete Contin. Dyn. Syst. Ser. S 5 (2012) 641-656. | MR 2861831 | Zbl 1244.65131

[39] Y. Penel, Existence of global solutions to the 1D abstract bubble vibration model. Differ. Integral Equ. 26 (2013) 59-80. | MR 3058697 | Zbl 1289.35262

[40] R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313-350. | MR 2436919 | Zbl 1147.76060

[41] G.I. Sivashinsky, Hydrodynamic theory of flame propagation in an enclosed volume. Acta Astronaut. 6 (1979) 631-645. | Zbl 0397.76062

[42] G. Volpe, Performance of compressible flow codes at low Mach numbers. AIAA J. 31 (1993) 49-56. | Zbl 0775.76140

[43] A. Voss, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of state. Ph.D. thesis, RWTH Aachen (2005). | Zbl 1114.35127

[44] N. Zuber, Flow excursions and oscillations in boiling, two-phase flow systems with heat addition, in Symposium on Two-phase Flow Dynamics, Eindhoven EUR4288e (1967) 1071-1089.