The chemical master equation is a fundamental equation in chemical kinetics. It underlies the classical reaction-rate equations and takes stochastic effects into account. In this paper we give a simple argument showing that the solutions of a large class of chemical master equations are bounded in weighted ℓ1-spaces and possess high-order moments. This class includes all equations in which no reactions between two or more already present molecules and further external reactants occur that add mass to the system. As an illustration for the implications of this kind of regularity, we analyze the effect of truncating the state space. This leads to an error analysis for the finite state projections of the chemical master equation, an approximation that forms the basis of many numerical methods.

Classification: 80A30, 60J27, 65L05, 65L70

Keywords: chemical master equation, existence of solutions and moments, error of finite state projections

@article{M2AN_2014__48_6_1757_0, author = {Gauckler, Ludwig and Yserentant, Harry}, title = {Regularity and approximability of the solutions to the chemical master equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {48}, number = {6}, year = {2014}, pages = {1757-1775}, doi = {10.1051/m2an/2014018}, language = {en}, url = {http://www.numdam.org/item/M2AN_2014__48_6_1757_0} }

Gauckler, Ludwig; Yserentant, Harry. Regularity and approximability of the solutions to the chemical master equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 6, pp. 1757-1775. doi : 10.1051/m2an/2014018. http://www.numdam.org/item/M2AN_2014__48_6_1757_0/

[1] Adaptive discrete Galerkin methods applied to the chemical master equation. SIAM J. Sci. Comput. 30 (2008) 2990-3011. | MR 2452375 | Zbl 1178.41003

, , and ,[2] Simultaneous state-time approximation of the chemical master equation using tensor product formats. arXiv:1311.3143 (2013).

and ,[3] Spectral approximation of solutions to the chemical master equation. J. Comput. Appl. Math. 229 (2009) 208-221. | MR 2522514 | Zbl 1168.65006

,[4] A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22 (1976) 403-434. | MR 503370

,[5] A rigorous derivation of the chemical master equation. Phys. A 188 (1992) 404-425.

,[6] Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58 (2007) 35-55.

,[7] Approximating the solution of the chemical master equation by aggregation. ANZIAM J. 50 (2008) C371-C384. | MR 2457252

,[8] On the numerical solution of the chemical master equation with sums of rank one tensors. ANZIAM J. Electron. Suppl. 52 (2010) C628-C643. | MR 2870191

and ,[9] Sparse grids and hybrid methods for the chemical master equation. BIT 48 (2008) 265-283. | MR 2430620 | Zbl 1155.65304

, and ,[10] Hybrid method for the chemical master equation. J. Comput. Phys. 227 (2007) 100-122. | Zbl 1126.80010

and ,[11] Modeling and simulating chemical reactions. SIAM Rev., 50:347-368, 2008. | MR 2403055 | Zbl 1144.80011

,[12] Numerical solution of stochastic models of biochemical kinetics. Can. Appl. Math. Q. 17 (2009) 523-554. | MR 2848566 | Zbl 1252.82008

, and ,[13] On reduced models for the chemical master equation. Multiscale Model. Simul. 9 (2011) 1646-1676. | MR 2861253 | Zbl 1244.65005

,[14] A dynamical low-rank approach to the chemical master equation. Bull. Math. Biol. 70 (2008) 2283-2302. | MR 2448010 | Zbl 1169.92021

and ,[15] Solving chemical master equations by adaptive wavelet compression. J. Comput. Phys. 229 (2010) 5724-5741. | MR 2657871 | Zbl 1203.65104

and ,[16] Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput. Biol. 10 (2014) e1003359.

, , and ,[17] Spectral theory for the differential equations of simple birth and death processes. Phil. Trans. R. Soc. A 246 (1954) 321-369. | MR 60103 | Zbl 0059.11704

and ,[18] Kolmogorov's differential equations and positive semigroups on first moment sequence spaces. J. Math. Biol. 53 (2006) 642-671. | MR 2251789 | Zbl 1113.92069

, and ,[19] Hybrid stochastic-deterministic solution of the chemical master equation. Multiscale Model. Simul. 10 (2012) 1232-1262. | MR 3022038 | Zbl pre06160060

, , and ,[20] The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124 (2006) 044104. | Zbl 1131.82020

and ,[21] On the differential equations for the transition probabilities of Markov processes with enumerably many states. Proc. Cambridge Philos. Soc. 49 (1953) 247-262. | MR 53343 | Zbl 0053.27202

and ,[22] An optimal finite state projection method. Procedia Comput. Sci. 1 (2012) 1579-1586.

and ,[23] Stochastic semigroups: their construction by perturbation and approximation, in Positivity IV-theory and applications. Tech. Univ. Dresden, Dresden (2006) 135-146. | MR 2239544 | Zbl 1113.47029

and ,[24] Numerical methods for the chemical master equation. Doctoral Thesis, Karlsruher Institut für Technologie (2012).

,