A trace finite element method for a class of coupled bulk-interface transport problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1303-1330.

In this paper we study a system of advection-diffusion equations in a bulk domain coupled to an advection-diffusion equation on an embedded surface. Such systems of coupled partial differential equations arise in, for example, the modeling of transport and diffusion of surfactants in two-phase flows. The model considered here accounts for adsorption-desorption of the surfactants at a sharp interface between two fluids and their transport and diffusion in both fluid phases and along the interface. The paper gives a well-posedness analysis for the system of bulk-surface equations and introduces a finite element method for its numerical solution. The finite element method is unfitted, i.e., the mesh is not aligned to the interface. The method is based on taking traces of a standard finite element space both on the bulk domains and the embedded surface. The numerical approach allows an implicit definition of the surface as the zero level of a level-set function. Optimal order error estimates are proved for the finite element method both in the bulk-surface energy norm and the L2-norm. The analysis is not restricted to linear finite elements and a piecewise planar reconstruction of the surface, but also covers the discretization with higher order elements and a higher order surface reconstruction.

Reçu le :
DOI : 10.1051/m2an/2015013
Classification : 65N30, 65N15, 76T99
Mots-clés : Finite element method, surface PDEs, surface-bulk coupled problems, unfitted method, transport-diffusion
Gross, Sven 1 ; Olshanskii, Maxim A. 2 ; Reusken, Arnold 1

1 Institut für Geometrie und Praktische Mathematik, RWTH-Aachen University, 52056 Aachen, Germany
2 Department of Mathematics, University of Houston, Houston, TX-77204-3008, USA
@article{M2AN_2015__49_5_1303_0,
     author = {Gross, Sven and Olshanskii, Maxim A. and Reusken, Arnold},
     title = {A trace finite element method for a class of coupled bulk-interface transport problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1303--1330},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015013},
     zbl = {1329.76171},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2015013/}
}
TY  - JOUR
AU  - Gross, Sven
AU  - Olshanskii, Maxim A.
AU  - Reusken, Arnold
TI  - A trace finite element method for a class of coupled bulk-interface transport problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1303
EP  - 1330
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2015013/
DO  - 10.1051/m2an/2015013
LA  - en
ID  - M2AN_2015__49_5_1303_0
ER  - 
%0 Journal Article
%A Gross, Sven
%A Olshanskii, Maxim A.
%A Reusken, Arnold
%T A trace finite element method for a class of coupled bulk-interface transport problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1303-1330
%V 49
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2015013/
%R 10.1051/m2an/2015013
%G en
%F M2AN_2015__49_5_1303_0
Gross, Sven; Olshanskii, Maxim A.; Reusken, Arnold. A trace finite element method for a class of coupled bulk-interface transport problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1303-1330. doi : 10.1051/m2an/2015013. https://www.numdam.org/articles/10.1051/m2an/2015013/

A. Alphonse, C. Elliott and B. Stinner, An abstract framework for parabolic pdes on evolving spaces. Port. Math. 72 (2015) 1–46. | DOI | Zbl

A. Bonito, R. Nochetto and M. Pauletti, Dynamics of biomembranes: effect of the bulk fluid. Math. Model. Nat. Phenom. 6 (2011) 25–43. | DOI | Zbl

E. Burman and P. Hansbo, Fictitious domain finite element methods using cut elements: II. A stabilized nitsche method. Appl. Numer. Math. 62 (2012) 328–341. | DOI | Zbl

E. Burman, P. Hansbo, M. Larson and S. Zahedi, Cut finite element methods for coupled bulk-surface problems. Preprint (2014) arXiv:1403.6580.

L. Cattaneo, L. Formaggia, G.F. Iori, A. Scotti and P. Zunino,Stabilized extended finite elements for the approximation of saddle point problems with unfitted interfaces. Calcolo (2014) 1–30.

K.-Y. Chen and M.-C. Lai, A conservative scheme for solving coupled surface-bulk convection-diffusion equations with an application to interfacial flows with soluble surfactant. J. Comput. Phys. 257 (2014) 1–18. | DOI | Zbl

J. Chessa and T. Belytschko, An extended finite element method for two-phase fluids. ASME J. Appl. Mech. 70 (2003) 10–17. | DOI | Zbl

R. Clift, J. Grace and M. Weber, Bubbles, Drops and Particles. Dover, Mineola (2005).

K. Deckelnick, C.M. Elliott and T. Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations. SIAM J. Numer. Anal. 52 (2014) 2137–2162. | DOI | Zbl

A. Demlow, Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47 (2009) 805–827. | DOI | Zbl

A. Demlow and G. Dziuk, An adaptive finite element method for the Laplace−Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45 (2007) 421–442. | DOI | Zbl

A. Demlow and M. Olshanskii, An adaptive surface finite element method based on volume meshes. SIAM J. Numer. Anal. 50 (2012) 1624–1647. | DOI | Zbl

M. Do-Quang, G. Amberg and C.-O. Petterson, Modeling of the adsorption kinetics and the convection of surfactants in a weld pool. J. Heat Transfer 130 (2008) 092102–1. | DOI

G. Dziuk and C. Elliott, Finite element methods for surface pdes. Acta Numer. 22 (2013) 289–396. | DOI | Zbl

C. Eggleton and K. Stebe, An adsorption-desorption-controlled surfactant on a deforming droplet. J. Colloid Interface Sci. 208 (1998) 68–80. | DOI

C. Elliott and T. Ranner, Finite element analysis for a coupled bulk-surface partial differential equation. IMA J. Numer. Anal. 33 (2013) 377–402. | DOI | Zbl

A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer, New York (2004). | Zbl

T. Fries and T. Belytschko, The generalized/extended finite element method: An overview of the method and its applications. Int. J. Num. Meth. Eng. 84 (2010) 253–304. | DOI | Zbl

J. Grande and A. Reusken, A higher order finite element method for partial differential equations on surfaces. IGPM RWTH Aachen University. Preprint 403 (2014).

P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston (1985). | Zbl

S. Gross, M.A. Olshanskii and A. Reusken, A trace finite element method for a class of coupled bulk-interface transport problems. SC&NA, University of Houston. Preprint 28 (2014).

S. Gross and A. Reusken, An extended pressure finite element space for two-phase incompressible flows with surface tension. J. Comput. Phys. 224 (2007) 40–58. | DOI | Zbl

S. Gross and A. Reusken, Numerical Methods for Two-phase Incompressible Flows. Springer, Berlin (2011). | Zbl

A. Hansbo and P. Hansbo, An unfitted finite element method, based on nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5537–5552. | DOI | Zbl

A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523–3540. | DOI | Zbl

P. Hansbo, M.G. Larson and S. Zahedi, A cut finite element method for a stokes interface problem. Appl. Numer. Math. 85 (2014) 90–114. | DOI | Zbl

M. Olshanskii and A. Reusken, A finite element method for surface PDEs: matrix properties. Numer. Math. 114 (2009) 491–520. | DOI | Zbl

M. Olshanskii and A. Reusken, Error analysis of a space-time finite element method for solving PDEs on evolving surfaces, SIAM J. Numer. Anal. 52 (2014) 2092–2120. | DOI | Zbl

M. Olshanskii, A. Reusken and J. Grande, A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47 (2009) 3339–3358. | DOI | Zbl

M. Olshanskii, A. Reusken and X. Xu, An Eulerian space-time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52 (2014) 1354–1377. | DOI | Zbl

M. Olshanskii, A. Reusken and X. Xu, A stabilized finite element method for advection-diffusion equations on surfaces. IMA J. Numer. Anal. 34 (2014) 732–758. | DOI | Zbl

M. Olshanskii and D. Safin, A narrow-band unfitted finite element method for elliptic pdes posed on surfaces. To appear in Math. Comput. (2015).

F. Ravera, M. Ferrari and L. Liggieri, Adsorption and partition of surfactants in liquid-liquid systems. Adv. Colloid Interface Sci. 88 (2000) 129–177. | DOI

A. Reusken, Analysis of trace finite element methods for surface partial differential equations. To appear in IMA J. Numer. Anal. (2014). Doi: . | DOI

S. Tasoglu, U. Demirci and M. Muradoglu, The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble. Physics of Fluids 20 (2008) 040805–1. | DOI | Zbl

J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). | Zbl

  • Cao, Yanzhao; Hoang, Thi-Thao-Phuong; Huynh, Phuoc-Toan Monolithic and local time-stepping decoupled algorithms for transport problems in fractured porous media, IMA Journal of Numerical Analysis, Volume 45 (2025) no. 1, p. 283 | DOI:10.1093/imanum/drae005
  • Neilan, Michael; Olshanskii, Maxim An Eulerian finite element method for the linearized Navier–Stokes problem in an evolving domain, IMA Journal of Numerical Analysis, Volume 44 (2024) no. 6, p. 3234 | DOI:10.1093/imanum/drad105
  • Larson, Mats G.; Zahedi, Sara Conservative cut finite element methods using macroelements, Computer Methods in Applied Mechanics and Engineering, Volume 414 (2023), p. 116141 | DOI:10.1016/j.cma.2023.116141
  • Shi, Xueting; Yuan, Guangwei Well-posedness of nonlinear two-phase flow model with solute transport, Journal of Mathematical Analysis and Applications, Volume 525 (2023) no. 1, p. 127119 | DOI:10.1016/j.jmaa.2023.127119
  • Frittelli, Massimo; Madzvamuse, Anotida; Sgura, Ivonne Virtual element method for elliptic bulk‐surface PDEs in three space dimensions, Numerical Methods for Partial Differential Equations, Volume 39 (2023) no. 6, p. 4221 | DOI:10.1002/num.23040
  • von Wahl, Henry; Richter, Thomas Error Analysis for a Parabolic PDE Model Problem on a Coupled Moving Domain in a Fully Eulerian Framework, SIAM Journal on Numerical Analysis, Volume 61 (2023) no. 1, p. 286 | DOI:10.1137/21m1458417
  • Maarouf, S.; Bernardi, C.; Yakoubi, D. Characteristics/finite element analysis for two incompressible fluid flows with surface tension using level set method, Computer Methods in Applied Mechanics and Engineering, Volume 394 (2022), p. 114843 | DOI:10.1016/j.cma.2022.114843
  • von Wahl, Henry; Richter, Thomas; Lehrenfeld, Christoph An unfitted Eulerian finite element method for the time-dependent Stokes problem on moving domains, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 3, p. 2505 | DOI:10.1093/imanum/drab044
  • Olshanskii, Maxim; Xu, Xianmin; Yushutin, Vladimir A finite element method for Allen–Cahn equation on deforming surface, Computers Mathematics with Applications, Volume 90 (2021), p. 148 | DOI:10.1016/j.camwa.2021.03.018
  • Elliott, C M; Ranner, T A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains, IMA Journal of Numerical Analysis, Volume 41 (2021) no. 3, p. 1696 | DOI:10.1093/imanum/draa062
  • Xiao, Xufeng; Feng, Xinlong; Li, Zhilin The local tangential lifting method for moving interface problems on surfaces with applications, Journal of Computational Physics, Volume 431 (2021), p. 110146 | DOI:10.1016/j.jcp.2021.110146
  • Frittelli, Massimo; Madzvamuse, Anotida; Sgura, Ivonne Bulk-surface virtual element method for systems of PDEs in two-space dimensions, Numerische Mathematik, Volume 147 (2021) no. 2, p. 305 | DOI:10.1007/s00211-020-01167-3
  • Epshteyn, Yekaterina; Xia, Qing Difference potentials method for models with dynamic boundary conditions and bulk-surface problems, Advances in Computational Mathematics, Volume 46 (2020) no. 5 | DOI:10.1007/s10444-020-09798-8
  • Villa, Andrea; Barbieri, Luca; Malgesini, Roberto Three dimensional simulation of the dynamics of electro active polymers using shell elements, Applied Mathematics and Computation, Volume 377 (2020), p. 125160 | DOI:10.1016/j.amc.2020.125160
  • Burman, Erik; Hansbo, Peter; Larson, Mats G.; Massing, André; Zahedi, Sara A stabilized cut streamline diffusion finite element method for convection–diffusion problems on surfaces, Computer Methods in Applied Mechanics and Engineering, Volume 358 (2020), p. 112645 | DOI:10.1016/j.cma.2019.112645
  • Bui, Hoang-Giang; Schillinger, Dominik; Meschke, Günther Efficient cut-cell quadrature based on moment fitting for materially nonlinear analysis, Computer Methods in Applied Mechanics and Engineering, Volume 366 (2020), p. 113050 | DOI:10.1016/j.cma.2020.113050
  • Stinner, Björn; Dedner, Andreas; Nixon, Adam A Finite Element Method for a Fourth Order Surface Equation With Application to the Onset of Cell Blebbing, Frontiers in Applied Mathematics and Statistics, Volume 6 (2020) | DOI:10.3389/fams.2020.00021
  • Larson, Mats G; Zahedi, Sara Stabilization of high order cut finite element methods on surfaces, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 3, p. 1702 | DOI:10.1093/imanum/drz021
  • Burman, Erik; Hansbo, Peter; Larson, Mats G. A cut finite element method for a model of pressure in fractured media, Numerische Mathematik, Volume 146 (2020) no. 4, p. 783 | DOI:10.1007/s00211-020-01157-5
  • Gürkan, Ceren; Sticko, Simon; Massing, André Stabilized Cut Discontinuous Galerkin Methods for Advection-Reaction Problems, SIAM Journal on Scientific Computing, Volume 42 (2020) no. 5, p. A2620 | DOI:10.1137/18m1206461
  • Simon, K.; Tobiska, L. Local projection stabilization for convection–diffusion–reaction equations on surfaces, Computer Methods in Applied Mechanics and Engineering, Volume 344 (2019), p. 34 | DOI:10.1016/j.cma.2018.09.031
  • Gürkan, Ceren; Massing, André A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems, Computer Methods in Applied Mechanics and Engineering, Volume 348 (2019), p. 466 | DOI:10.1016/j.cma.2018.12.041
  • Burman, Erik; Hansbo, Peter; Larson, Mats G.; Larsson, Karl Cut finite elements for convection in fractured domains, Computers Fluids, Volume 179 (2019), p. 726 | DOI:10.1016/j.compfluid.2018.07.022
  • Lehrenfeld, Christoph; Olshanskii, Maxim An Eulerian finite element method for PDEs in time-dependent domains, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 53 (2019) no. 2, p. 585 | DOI:10.1051/m2an/2018068
  • Chave, Florent; Di Pietro, Daniele A.; Formaggia, Luca A Hybrid High-Order method for passive transport in fractured porous media, GEM - International Journal on Geomathematics, Volume 10 (2019) no. 1 | DOI:10.1007/s13137-019-0114-x
  • Xiao, Xufeng; Feng, Xinlong; Li, Zhilin A gradient recovery–based adaptive finite element method for convection‐diffusion‐reaction equations on surfaces, International Journal for Numerical Methods in Engineering, Volume 120 (2019) no. 7, p. 901 | DOI:10.1002/nme.6163
  • Schillinger, Dominik; Gangwar, Tarun; Gilmanov, Anvar; Heuschele, Jo D.; Stolarski, Henryk K. Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures, Computer Methods in Applied Mechanics and Engineering, Volume 335 (2018), p. 298 | DOI:10.1016/j.cma.2018.02.029
  • Burman, Erik; Hansbo, Peter; Larson, Mats G.; Massing, André Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 6, p. 2247 | DOI:10.1051/m2an/2018038
  • Eigel, Martin; Müller, Rüdiger A posteriori error control for stationary coupled bulk-surface equations, IMA Journal of Numerical Analysis, Volume 38 (2018) no. 1, p. 271 | DOI:10.1093/imanum/drw080
  • Chernyshenko, Alexey Y.; Olshanskii, Maxim A.; Vassilevski, Yuri V. A hybrid finite volume – finite element method for bulk–surface coupled problems, Journal of Computational Physics, Volume 352 (2018), p. 516 | DOI:10.1016/j.jcp.2017.09.064
  • Alphonse, Amal; Elliott, Charles M.; Terra, Joana A Coupled Ligand-Receptor Bulk-Surface System on a Moving Domain: Well Posedness, Regularity, and Convergence to Equilibrium, SIAM Journal on Mathematical Analysis, Volume 50 (2018) no. 2, p. 1544 | DOI:10.1137/16m110808x
  • Grande, Jörg; Lehrenfeld, Christoph; Reusken, Arnold Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 1, p. 228 | DOI:10.1137/16m1102203
  • Lehrenfeld, Christoph; Olshanskii, Maxim A.; Xu, Xianmin A Stabilized Trace Finite Element Method for Partial Differential Equations on Evolving Surfaces, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 3, p. 1643 | DOI:10.1137/17m1148633
  • Hansbo, Peter; G. Larson, Mats; Massing, André A stabilized cut finite element method for the Darcy problem on surfaces, Computer Methods in Applied Mechanics and Engineering, Volume 326 (2017), p. 298 | DOI:10.1016/j.cma.2017.08.007
  • Olshanskii, Maxim A.; Reusken, Arnold Trace Finite Element Methods for PDEs on Surfaces, Geometrically Unfitted Finite Element Methods and Applications, Volume 121 (2017), p. 211 | DOI:10.1007/978-3-319-71431-8_7
  • Hansbo, Peter; Larson, Mats G.; Larsson, Karl Cut Finite Element Methods for Linear Elasticity Problems, Geometrically Unfitted Finite Element Methods and Applications, Volume 121 (2017), p. 25 | DOI:10.1007/978-3-319-71431-8_2
  • Massing, André A Cut Discontinuous Galerkin Method for Coupled Bulk-Surface Problems, Geometrically Unfitted Finite Element Methods and Applications, Volume 121 (2017), p. 259 | DOI:10.1007/978-3-319-71431-8_8
  • Burman, Erik; Hansbo, Peter; Larson, Mats G.; Massing, André A cut discontinuous Galerkin method for the Laplace–Beltrami operator, IMA Journal of Numerical Analysis, Volume 37 (2017) no. 1, p. 138 | DOI:10.1093/imanum/drv068
  • Olshanskii, Maxim A.; Xu, Xianmin A Trace Finite Element Method for PDEs on Evolving Surfaces, SIAM Journal on Scientific Computing, Volume 39 (2017) no. 4, p. A1301 | DOI:10.1137/16m1099388
  • Ganesan, Sashikumaar; Hahn, Andreas; Simon, Kristin; Tobiska, Lutz ALE-FEM for Two-Phase and Free Surface Flows with Surfactants, Transport Processes at Fluidic Interfaces (2017), p. 5 | DOI:10.1007/978-3-319-56602-3_1
  • Hansbo, Peter; Larson, Mats G.; Zahedi, Sara A cut finite element method for coupled bulk-surface problems on time-dependent domains, Computer Methods in Applied Mechanics and Engineering, Volume 307 (2016), p. 96 | DOI:10.1016/j.cma.2016.04.012
  • Burman, Erik; Hansbo, Peter; Larson, Mats G.; Massing, André; Zahedi, Sara Full gradient stabilized cut finite element methods for surface partial differential equations, Computer Methods in Applied Mechanics and Engineering, Volume 310 (2016), p. 278 | DOI:10.1016/j.cma.2016.06.033
  • Madzvamuse, Anotida; Chung, Andy H.W. The bulk-surface finite element method for reaction–diffusion systems on stationary volumes, Finite Elements in Analysis and Design, Volume 108 (2016), p. 9 | DOI:10.1016/j.finel.2015.09.002
  • Olshanskii, M. A.; Safin, D. Numerical integration over implicitly defined domains for higher order unfitted finite element methods, Lobachevskii Journal of Mathematics, Volume 37 (2016) no. 5, p. 582 | DOI:10.1134/s1995080216050103
  • Barrett, John W.; Garcke, Harald; Nürnberg, Robert Stable finite element approximations of two-phase flow with soluble surfactant, Journal of Computational Physics, Volume 297 (2015), p. 530 | DOI:10.1016/j.jcp.2015.05.029

Cité par 45 documents. Sources : Crossref