We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17].
DOI : 10.1051/m2an/2015021
Mots clés : Chemotaxis, Keller–Segel model, minimizing scheme, Kantorovich–Rubinstein–Wasserstein distance
@article{M2AN_2015__49_6_1553_0, author = {Blanchet, Adrien and Carrillo, Jos\'e Antonio and Kinderlehrer, David and Kowalczyk, Micha{\l} and Lauren\c{c}ot, Philippe and Lisini, Stefano}, title = {A hybrid variational principle for the {Keller{\textendash}Segel} system in $\mathbb{R}^{2}$}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1553--1576}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015021}, mrnumber = {3423264}, zbl = {1334.35086}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2015021/} }
TY - JOUR AU - Blanchet, Adrien AU - Carrillo, José Antonio AU - Kinderlehrer, David AU - Kowalczyk, Michał AU - Laurençot, Philippe AU - Lisini, Stefano TI - A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$ JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1553 EP - 1576 VL - 49 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2015021/ DO - 10.1051/m2an/2015021 LA - en ID - M2AN_2015__49_6_1553_0 ER -
%0 Journal Article %A Blanchet, Adrien %A Carrillo, José Antonio %A Kinderlehrer, David %A Kowalczyk, Michał %A Laurençot, Philippe %A Lisini, Stefano %T A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$ %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1553-1576 %V 49 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2015021/ %R 10.1051/m2an/2015021 %G en %F M2AN_2015__49_6_1553_0
Blanchet, Adrien; Carrillo, José Antonio; Kinderlehrer, David; Kowalczyk, Michał; Laurençot, Philippe; Lisini, Stefano. A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 6, pp. 1553-1576. doi : 10.1051/m2an/2015021. http://archive.numdam.org/articles/10.1051/m2an/2015021/
L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Clarendon Press Oxford (2000). | MR | Zbl
L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lect. Math. ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR | Zbl
Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9 (1999) 347–359. | MR | Zbl
,Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math. 66 (1994) 319–334. | DOI | MR | Zbl
and ,Large mass self-similar solutions of the parabolic-parabolic Keller–Segel model of chemotaxis. J. Math. Biol. 63 (2011) 1–32. | DOI | MR | Zbl
, and ,P. Biler, I. Guerra and G. Karch, Large global-in-time solutions of the parabolic-parabolic Keller–Segel system on the plane. Preprint arXiv:1401.7650 [math.AP] (2014). | MR
The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23 (1994) 1189–1209. | DOI | MR | Zbl
, and ,The parabolic-parabolic Keller–Segel system with critical diffusion as a gradient flow in . Commun. Partial Differ. Eq. 38 (2013) 658–686. | DOI | MR | Zbl
and ,Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller–Segel model. SIAM J. Numer. Anal. 46 (2008) 691–721. | DOI | MR | Zbl
, and ,Infinite time aggregation for the critical Patlak-Keller–Segel model in . Commun. Pure Appl. Math. 61 (2008) 1449–1481. | DOI | MR | Zbl
, and ,A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. (2006) (electronic). | MR | Zbl
Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller–Segel model. J. Funct. Anal. 262 (2012) 2142–2230. | DOI | MR | Zbl
, and ,Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86 (2006) 155–175. | DOI | MR | Zbl
and ,The parabolic-parabolic Keller–Segel model in . Commun. Math. Sci. 6 (2008) 417–447. | DOI | MR | Zbl
and ,Asymptotic estimates for the parabolic-elliptic Keller–Segel model in the plane. Commun. Partial Differ. Equ. 39 (2014) 806–841. | DOI | MR | Zbl
and ,J.A. Carrillo and F. Santambrogio, Local in time bounds of nonlinear Fokker–Planck equations via variational schemes. In preparation (2015).
Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19 (2003) 1–48. | MR | Zbl
, and ,Uniqueness for Keller–Segel-type chemotaxis models. Discrete Contin. Dyn. Syst. 34 (2014) 1319–1338. | DOI | MR | Zbl
, and ,On blowup dynamics in the Keller–Segel model of chemotaxis. St. Petersburg Math. J. 25 (2014) 547–574. | DOI | MR | Zbl
, , and ,New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47 (2008) 386–408. | DOI | MR | Zbl
and ,Upwind-difference potentials method for Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53 (2012) 689–713. | DOI | MR | Zbl
,A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa, Cl. Sci. Serie IV 24 (1997) 633–683. | Numdam | MR | Zbl
and ,Trudinger–Moser inequality on the whole plane with the exact growth condition. J. Eur. Math. Soc. (JEMS) 17 (2015) 819–835. | DOI | MR | Zbl
, and ,The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl
, and ,Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | DOI | MR | Zbl
and ,Model for chemotaxis. J. Theor. Biol. 30 (1971) 225–234. | DOI | Zbl
and ,The Janossy effect and hybrid variational principles. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 153–176. | MR | Zbl
and ,D. Kinderlehrer, L. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations. To appear in ESAIM: COCV (2015). Doi:. | DOI | Numdam | MR
A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Equ. 47 (2013) 319–341. | DOI | MR | Zbl
and ,A family of nonlinear fourth order equations of gradient flow type. Comm. Partial Differ. Equ. 34 (2009) 1352–1397. | DOI | MR | Zbl
, and ,Y. Mimura, The variational formulation of the fully parabolic Keller–Segel system with degenerate diffusion. Preprint (2012). | MR
Global existence for the Cauchy problem of the parabolic-parabolic Keller–Segel system on the plane. Calc. Var. Partial Differ. Equ. 48 (2013) 491–505. | DOI | MR | Zbl
,On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86 (1982) 321–326. | DOI | MR | Zbl
,The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26 (2001) 101–174. | DOI | MR | Zbl
,On the stability of critical chemotactic aggregation. Mathematische Annalen 359 (2014) 267–377. | DOI | MR | Zbl
and ,R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak–Keller–Segel model. Preprint arXiv:1403.4975 [math.AP] (2014).
C. Villani, Topics in optimal transportation. Vol. 58 of Grad. Stud. Math. American Mathematical Society, Providence, RI (2003). | MR | Zbl
J. Zinsl, Existence of solutions for a nonlinear system of parabolic equations with gradient flow structure. Monatshefte für Mathematik (2013) 1–27. | MR | Zbl
Exponential convergence to equilibrium in a coupled gradient flow system modelling chemotaxis. Anal. Partial Differ. Equ. 8 (2015) 425–466. | MR | Zbl
and ,Cité par Sources :