Equilibrium multi-population matching (matching for teams) is a problem from mathematical economics which is related to multi-marginal optimal transport. A special but important case is the Wasserstein barycenter problem, which has applications in image processing and statistics. Two algorithms are presented: a linear programming algorithm and an efficient nonsmooth optimization algorithm, which applies in the case of the Wasserstein barycenters. The measures are approximated by discrete measures: convergence of the approximation is proved. Numerical results are presented which illustrate the efficiency of the algorithms.
DOI : 10.1051/m2an/2015033
Mots-clés : Matching for teams, Wasserstein barycenters, duality, linear programming, numerical methods for nonsmooth convex minimization
@article{M2AN_2015__49_6_1621_0, author = {Carlier, Guillaume and Oberman, Adam and Oudet, Edouard}, title = {Numerical methods for matching for teams and {Wasserstein} barycenters}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1621--1642}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015033}, mrnumber = {3423268}, zbl = {1331.49042}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2015033/} }
TY - JOUR AU - Carlier, Guillaume AU - Oberman, Adam AU - Oudet, Edouard TI - Numerical methods for matching for teams and Wasserstein barycenters JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1621 EP - 1642 VL - 49 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2015033/ DO - 10.1051/m2an/2015033 LA - en ID - M2AN_2015__49_6_1621_0 ER -
%0 Journal Article %A Carlier, Guillaume %A Oberman, Adam %A Oudet, Edouard %T Numerical methods for matching for teams and Wasserstein barycenters %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1621-1642 %V 49 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2015033/ %R 10.1051/m2an/2015033 %G en %F M2AN_2015__49_6_1621_0
Carlier, Guillaume; Oberman, Adam; Oudet, Edouard. Numerical methods for matching for teams and Wasserstein barycenters. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1621-1642. doi : 10.1051/m2an/2015033. http://archive.numdam.org/articles/10.1051/m2an/2015033/
Barycenters in the wasserstein space. SIAM J. Math. Anal. 43 (2011) 904–924. | DOI | MR | Zbl
and ,A computational fluid mechanics solution to the Monge−Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. | DOI | MR | Zbl
and ,Numerical solution of the optimal transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260 (2014) 107–126. | DOI | MR | Zbl
, and ,J. Bigot and T. Klein, Consistent estimation of a population barycenter in the wasserstein space. Preprint arXiv:1212.2562 (2012).
Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44 (1991) 375–417. | DOI | MR | Zbl
,A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15 (2005) 751–779. | DOI | MR | Zbl
, and ,Matching for teams. Economic Theory 42 (2010) 397–418. | DOI | MR | Zbl
and ,M. Cuturi and A. Doucet, Fast computation of Wasserstein barycenters. Proc. of the 31st International Conference on Machine Learning – ICML-14 (2014) 685–693.
Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20 (2011) 257–267. | DOI | MR | Zbl
, and ,Optimal maps for the multidimensional Monge-Kantorovich problem. Commun. Pure Appl. Math. 51 (1998) 23–45. | DOI | MR | Zbl
and ,Remarks on multi-marginals symmetric Monge-Kantorovich problems. Discrete Cont. Dyn. Syst. 34 (2014) 1465–1480. | DOI | MR | Zbl
and ,A self-dual polar factorization for vector fields. Commun. Pure Appl. Math. 66 (2013) 905–933. | DOI | MR | Zbl
and ,M. Grant and S. Boyd, Graph implementations for nonsmooth convex programs. In Recent Advances in Learning and Control. Edited by V. Blondel, S. Boyd and H. Kimura. Lect. Notes Control Inform. Sci. Springer-Verlag Limited (2008) 95–110. Available on http://stanford.edu/˜boyd/graph˙dcp.html. | MR | Zbl
M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming. Version 1.21. Available on http://cvxr.com/cvx (2010).
Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Math. Program. 109 (2007) 181–205. | DOI | MR | Zbl
, and ,J.B. Hiriart-Urruty and C. Lemaréchal, Vol. 1 of Convex analysis and minimization algorithms. Springer (1996).
C. Lemaréchal, R. Mifflin, Nonsmooth optimization. In Proc. of IIASA: International Institute for Applied Systems Analysis. Pergamon Press (1978). | MR | Zbl
A.S. Lewis and M.L. Overton, Behavior of BFGS with an exact line search on nonsmooth examples. Technical report. Optimization Online (2008b). http://www.optimization-online.org/DB˙FILE/2008/12/2173.pdf. SIAM J. Optim. (Submitted).
A.S. Lewis and M.L. Overton, Nonsmooth optimization via BFGS. SIAM J. Optim. (Submitted).
A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. | DOI | MR | Zbl
,Q. Mérigot and É. Oudet, Discrete optimal transport: complexity, geometry and applications. Preprint (2012). | MR
Optimal transport with proximal splitting. SIAM J. Imag. Sci. 7 (2014) 212–238. | DOI | MR | Zbl
, and ,Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions. Discrete Contin. Dyn. Syst. 34 (2014) 1623–1639. | DOI | MR | Zbl
,On the local structure of optimal measures in the multi-marginal optimal transportation problem. Calc. Var. Partial Differ. Equ. 43 (2012) 529–536. | DOI | MR | Zbl
,Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlin. Progr. 9 (1976) 53–72. | MR | Zbl
,J. Rabin, G. Peyré, J. Delon and M. Bernot, Wasserstein barycenter and its application to texture mixing. In Scale Space and Variational Methods in Computer Vision. Springer. (2012) 435–446.
A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Vol. 24. Springer (2003). | MR | Zbl
C. Villani, Topics in Optimal Transportation. Vol. 58. AMS Bookstore (2003). | MR | Zbl
C. Villani, Optimal Transport: Old and New. Vol. 338. Springer (2009). | MR | Zbl
Cité par Sources :