Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 2, pp. 593-631.

In this paper we present a derivation and multiscale analysis of a mathematical model for plant cell wall biomechanics that takes into account both the microscopic structure of a cell wall coming from the cellulose microfibrils and the chemical reactions between the cell wall’s constituents. Particular attention is paid to the role of pectin and the impact of calcium-pectin cross-linking chemistry on the mechanical properties of the cell wall. We prove the existence and uniqueness of the strongly coupled microscopic problem consisting of the equations of linear elasticity and a system of reaction-diffusion and ordinary differential equations. Using homogenization techniques (two-scale convergence and periodic unfolding methods) we derive a macroscopic model for plant cell wall biomechanics.

DOI: 10.1051/m2an/2015073
Classification: 35B27, 35Q92, 35Kxx, 74Qxx, 74A40, 74D05
Keywords: Homogenization, two-scale convergence, periodic unfolding method, elasticity, reaction-diffusion equations, plant modelling
Ptashnyk, Mariya 1; Seguin, Brian 1

1 Division of Mathematics, University of Dundee Dundee, DD1 4HN, UK.
@article{M2AN_2016__50_2_593_0,
     author = {Ptashnyk, Mariya and Seguin, Brian},
     title = {Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {593--631},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {2},
     year = {2016},
     doi = {10.1051/m2an/2015073},
     mrnumber = {3482556},
     zbl = {1342.35031},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2015073/}
}
TY  - JOUR
AU  - Ptashnyk, Mariya
AU  - Seguin, Brian
TI  - Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 593
EP  - 631
VL  - 50
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2015073/
DO  - 10.1051/m2an/2015073
LA  - en
ID  - M2AN_2016__50_2_593_0
ER  - 
%0 Journal Article
%A Ptashnyk, Mariya
%A Seguin, Brian
%T Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 593-631
%V 50
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2015073/
%R 10.1051/m2an/2015073
%G en
%F M2AN_2016__50_2_593_0
Ptashnyk, Mariya; Seguin, Brian. Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 2, pp. 593-631. doi : 10.1051/m2an/2015073. http://archive.numdam.org/articles/10.1051/m2an/2015073/

E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlin. Anal. Theory Methods Appl. 18 (1992) 481–496. | DOI | MR | Zbl

N.D. Alikakos, Lp bounds of solutions of reaction-diffusion equations. Commun. Partial Differ. Eq. 4 (1976) 827–868. | DOI | MR | Zbl

G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | DOI | MR | Zbl

G. Allaire, Shape Optimization by the Homogenization Method. Springer (2002). | MR | Zbl

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North Holland (1978). | MR | Zbl

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer (2010). | MR | Zbl

M.-A.-J. Chaplain, The strain energy function of an ideal plant cell wall. J. Theoret. Biol. 163 (1993) 77–97. | DOI

A. Chavarría-Krauser and M. Ptashnyk, Homogenization approach to water transport in plant tissues with periodic microstructures. Math. Model. Nat. Phenom. 8 (2013) 80–111. | DOI | MR | Zbl

P.-G. Ciarlet, Mathematical elasticity. Volume I: Three-dimensional elasticity. North-Holland (1988). | MR

P.-G. Ciarlet and P. Ciarlet Jr., Another approach to linear elasticity and Korn’s inequality. C.R. Acad. Sci. Paris Ser. I 339 (2004) 307–312. | DOI | MR | Zbl

D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer (1999). | MR | Zbl

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585–1620. | DOI | MR | Zbl

D. Cioranescu, A. Damlamian, P. Donato, G. Griso and R. Zaki, The periodic unfolding method in domains with holes. SIAM J. Math. Anal. 44 (2012) 718–760. | DOI | MR | Zbl

J.-R. Colvin, The size of the cellulose microfibril. J. Cell Biol. 17 (1963) 105–109. | DOI

D.-J. Cosgrove, Growth of the plant cell wall. Nat. Rev. Molec. Cell Biol. 6 (2005) 850–86. | DOI

I. Diddens, B. Murphy, M Krisch and M. Müller, Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41 (2008) 9755–9759. | DOI

J. Dumais, S.-L. Shaw, C.-R. Steele, S.-R. Long and P.-M. Ray, An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int. J. Developmental Biol. 50 (2006) 209–222. | DOI

R. Dutta and K.-R. Robinson, Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol. 135 (2004) 1398–1406. | DOI

R.-J. Dyson, O.-E. Jensen, A fibre-reinforced fluid model of anisotropic plant cell growth. J. Fluid Mech. 655 (2010) 472–503. | DOI | MR | Zbl

R.-J. Dyson, L.-R. Band and O.-E. Jensen, A model of crosslink kinetics in the expanding plant cell wall: Yield stress and enzyme action. J. Theoret. Biol. 307 (2012) 125–136. | DOI | MR | Zbl

T. Fatima, A. Muntean and M. Ptashnyk, Error estimate and unfolding method for homogenization of a reaction-diffusion system modeling sulfate corrosion. Appl. Anal. 91 (2012) 1129–1154. | MR | Zbl

Y.C. Fung, Biomechanics: mechanical properties of living tissues. Springer (1993).

R.-P. Gilbert and A. Mikelić, Homogenizing the acoustic properties of the seabed: Part I. Nonlin. Anal. 40 (2000) 185–212. | DOI | MR | Zbl

M.-E. Gurtin, E. Fried and L. Anand, The Mechanics and Thermodynamics of Continua. Cambridge University Press (2010). | MR

L. Haggerty, J.H. Sugarman, R.K. Prud’Homme, Diffusion of polymers through polyacrylamide gels. Polymer 29 (1988) 1058–1063. | DOI

W. Jäger and U. Hornung, Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differ. Eq. 92 (1991) 199–225. | DOI | MR | Zbl

W. Jäger, A. Mikelić and M. Neuss-Radu, Homogenization limit of a model system for interaction of flow, chemical reactions, and mechanics in cell tissues. SIAM J. Math. Anal. 43 (2011) 1390–1435. | DOI | MR | Zbl

V.-V. Jikov, S.-M. Kozlov and O.-A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer (1994). | MR | Zbl

C.-J. Kennedy, A. Šturcová, M.-C. Jarvis and T.-J. Wess, Hydration effects on spacing of primary-wall cellulose microfibrils: a small angle X-ray scattering study. Cellulose 14 (2007) 401–408. | DOI

A. Korn, Über einige ungleichungen, welche in der theorie del elastichen und elektrishen schwingungen eine rolle spielen. Bullettin Internationale, Cracovie Akademie Umiejet, Classe des sciences mathématiques et naturelles (1909) 705–724. | JFM

J.-H. Kroeger, R. Zerzour and A. Geitmann, Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth. PLoS One 6 (2011) e18549. | DOI

O. Ladyzhenskaya, V. Solonnikov and N. Ural’ceva, Linear and quasilinear equations of parabolic type. American Mathematical Society (1968). | MR

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969). | MR | Zbl

A. Logg and G.N. Wells, DOLFIN: automated finite element computing. ACM Trans. Math. Software 37 (2010). | DOI | MR | Zbl

A. Logg, K.-A. Mardal, G.N. Wells et al., Automated solution of differential equations by the finite element method. Springer (2012). | Zbl

A.J. Majda and A.L. Bertozzi, Vorticity and Incompressible Flow. Cambridge Texts Appl. Math. (2001). | MR | Zbl

A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenisation techniques. SIAM J. Math. Anal. 40 (2008) 215–237. | DOI | MR | Zbl

M.-L. Mascarenhas, Homogenization of a viscoelastic equations with non-periodic coefficients. Proc. Roy. Soc. Edinburgh: Sect. A Math. 106 (1987) 143–160. | DOI | MR | Zbl

A. Mikelić and M.-F. Wheeler, On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. Math. Models Methods Appl. Sci. 22 (2012) 1250031. | DOI | MR | Zbl

F. Murat and L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials. Vol. 31 of Progr. Nonlin. Differ. Equ. Appl. Birkhäuser Boston, Boston, MA (1997) 21–43. | MR | Zbl

J. Necas, Les méthodes directes en théorie des équations elliptiques. Academie, Prague (1967). | MR | Zbl

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | DOI | MR | Zbl

O. Oleinik, A.-S. Shamaev and G.-A. Yosifian, Mathematical problems in Elasticity and Homogenization. North Holland (1992). | MR | Zbl

K.B. Ølgaard and G.N. Wells, Optimisations for quadrature representations of finite element tensors through automated code generation. ACM Trans. Math. Software 37 (2010). | DOI | MR

J.-B. Passioura and S.-C. Fry, Turgor and cell expansion: beyond the Lockhart equation. Aust. J. Plant Physiol. 19 (1992) 565–576.

A. Peaucelle, S.A. Braybrook, L. Le Guillou, E. Bron, C. Kuhlemeier and H. Hofte, Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21 (2011) 1720–1726. | DOI

S. Pelletier, J. Van Orden, S. Wolf, K. Vissenberg, J. Delacourt, Y.-A. Ndong, J. Pelloux, V. Bischoff, A. Urbain, G. Mouille, G. Lemonnier, J.-P. Renou and H. Hofte, A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol. 188 (2010) 726–739. | DOI

T.-E. Proseus and J.-S. Boyer, Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle. J. Exp. Bot. 63 (2012) 1–6.

M. Ptashnyk, Derivation of a macroscopic model for nutrient uptake by a single branch of hairy-roots. Nonlin. Anal.: Real World Appl. 11 (2010) 4586–4596. | DOI | MR | Zbl

M. Ptashnyk and B. Seguin, Periodic homogenization and material symmetry in linear elasticity, (2015). | arXiv | MR

R. Redlinger, Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions. Arch. Rational Mech. Anal. 108 (1989) 281–291. | DOI | MR | Zbl

E.-R. Rojas, S. Hotton and J. Dumais, Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys. J. 101 (2011) 1844–1853. | DOI

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Springer (1980). | MR | Zbl

J. Simon, Compact sets in the space L p (0,T;B). Ann. Mat. Pure Appl. (IV) CXLVI (1987) 65–96. | MR | Zbl

J. Smoller, Shocke Waves and Reaction-Diffusion Equations. Springer (1994). | MR | Zbl

C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, S. Vorwerk and H. Youngs, Toward a systems approach to understanding plant cell walls. Science 306 (2004) 2206. | DOI

L.-H. Thomas, V.-T. Forsyth, A. Šturcová, C.-J. Kennedy, R.-P. May, C.-M. Altaner, D.-C. Apperley, T.-J. Wess and M.-C. Jarvis, Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiol. 161 (2013) 465–476. | DOI

B.-A. Veytsman and D.-J. Cosgrove, A model of cell wall expansion based on thermodynamics of polymer networks. Biophys. J. 75 (1998) 2240–2250. | DOI

P.J. White, The pathways of calcium movement to the xylem. J. Exp. Bot. 52 (2001) 891–899. | DOI

S. Wolf and S. Greiner, Growth control by cell wall pectins. Protoplasma 249 (2012) 169–175. | DOI

S. Wolf, K. Hématy and H. Höfte, Growth control and cell wall signaling in plants. Ann. Rev. Plant Biol. 63 (2012) 381–407. | DOI

S. Wolf, J. Mravec, S. Greiner, G. Mouille and H. Höfte, Plant cell wall homeostasis is mediated by Brassinosteroid feedback signaling. Curr. Biol. 22 (2012) 1732–1737. | DOI

U.-Z. Zimmermann, D. Hüs Ken and E.-D. Schulze, Direction turgor pressure measurements in individual leave cells of Tradescantia virginiana. Planta 148 (1980) 445–453. | DOI

G. Zsivanovits, A.-J. Macdougall, A.-C. Smith and S.-G. Ring, Material properties of concentrated pectin networks. Carbohyd. Res. 339 (2004) 1317–1322. | DOI

Cited by Sources: