A convex analysis approach to multi-material topology optimization
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1917-1936.

This work is concerned with optimal control of partial differential equations where the control enters the state equation as a coefficient and should take on values only from a given discrete set of values corresponding to available materials. A “multi-bang” framework based on convex analysis is proposed where the desired piecewise constant structure is incorporated using a convex penalty term. Together with a suitable tracking term, this allows formulating the problem of optimizing the topology of the distribution of material parameters as minimizing a convex functional subject to a (nonlinear) equality constraint. The applicability of this approach is validated for two model problems where the control enters as a potential and a diffusion coefficient, respectively. This is illustrated in both cases by numerical results based on a semi-smooth Newton method.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2016012
Classification : 49Q10, 49K20, 49M15
Mots-clés : Topology optimization, convex analysis, convexification, semi-smooth Newton method
Clason, Christian 1 ; Kunisch, Karl 2, 3

1 Faculty of Mathematics, University Duisburg-Essen, 45117 Essen, Germany.
2 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria.
3 Radon Institute, Austrian Academy of Sciences, Linz, Austria.
@article{M2AN_2016__50_6_1917_0,
     author = {Clason, Christian and Kunisch, Karl},
     title = {A convex analysis approach to multi-material topology optimization},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1917--1936},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {6},
     year = {2016},
     doi = {10.1051/m2an/2016012},
     zbl = {1354.49092},
     mrnumber = {3580127},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2016012/}
}
TY  - JOUR
AU  - Clason, Christian
AU  - Kunisch, Karl
TI  - A convex analysis approach to multi-material topology optimization
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1917
EP  - 1936
VL  - 50
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2016012/
DO  - 10.1051/m2an/2016012
LA  - en
ID  - M2AN_2016__50_6_1917_0
ER  - 
%0 Journal Article
%A Clason, Christian
%A Kunisch, Karl
%T A convex analysis approach to multi-material topology optimization
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1917-1936
%V 50
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2016012/
%R 10.1051/m2an/2016012
%G en
%F M2AN_2016__50_6_1917_0
Clason, Christian; Kunisch, Karl. A convex analysis approach to multi-material topology optimization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 6, pp. 1917-1936. doi : 10.1051/m2an/2016012. http://archive.numdam.org/articles/10.1051/m2an/2016012/

G. Allaire, Shape Optimization the Homogenization Method. Springer (2002). | MR | Zbl

G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | DOI | MR | Zbl

S. Amstutz, A semismooth Newton method for topology optimization. Nonlin. Anal. 73 (2010) 1585–1595. | DOI | MR | Zbl

S. Amstutz, Analysis of a level set method for topology optimization. Optim. Methods Softw. 26 (2011) 555–573. | DOI | MR | Zbl

S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. | DOI | MR | Zbl

H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). | MR | Zbl

M.P. Bendsøe and O. Sigmund, Topology Optimization. Springer-Verlag, Berlin (2003). | MR | Zbl

L. Blank, M.H. Farshbaf-Shaker, H. Garcke, C. Rupprecht and V. Styles,Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization, edited by G. Leugering et al. Vol. 165 of International Series of Numerical Mathematics. Springer International Publishing (2014) 231–246. | MR

C. Clason, K. Ito and K. Kunisch, A convex analysis approach to optimal controls with switching structure for partial differential equations. ESAIM: COCV 22 (2016) 581–609. | Numdam | MR | Zbl

C. Clason and K. Kunisch, Multi-bang control of elliptic systems. Ann. Inst. Henri Poincaré, (C) Anal. Non Linéaire 31 (2014) 1109–1130. | DOI | Numdam | MR | Zbl

I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Vol. 28 of Classics Appl. Math. SIAM, Philadelphia (1999). | MR | Zbl

S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. | DOI | MR | Zbl

J. Haslinger, M. Koĉvara, G. Leugering and M. Stingl, Multidisciplinary free material optimization. SIAM J. Appl. Math. 70 (2010) 2709–2728. | DOI | MR | Zbl

K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. Vol. 15 of Advances in Design and Control. SIAM, Philadelphia, PA (2008). | MR | Zbl

K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem. Inverse Problems 17 (2001) 1225. | DOI | MR | Zbl

O.A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968). | MR | Zbl

F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat. Pura Appl. 112 (1977) 49–68. | DOI | MR | Zbl

F. Murat and L. Tartar, H-convergence, in Topics in the mathematical modelling of composite materials. Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser, Boston, MA (1997) 21–43. | MR | Zbl

P. Neittaanmaki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems. Springer Monographs in Mathematics. Springer, New York (2006). | MR | Zbl

O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics. Springer-Verlag, New York (1984). | MR | Zbl

W. Schirotzek, Nonsmooth Analysis, Universitext. Springer, Berlin (2007). | MR | Zbl

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272 (electronic). | DOI | MR | Zbl

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Vol. 16 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1992). | MR | Zbl

M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. Vol. 11 of MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA (2011). | MR | Zbl

A. Wouk, A Course of Applied Functional Analysis. Wiley-Interscience. John Wiley & Sons, New York (1979). | MR | Zbl

Cité par Sources :