Uniform discrete Sobolev space estimates are proven for a class of finite-difference schemes for singularly-perturbed hyperbolic-parabolic systems. The estimates obtained improve previous results even when the PDEs do not involve singular perturbations. These estimates are used in a companion paper to prove the convergence of solutions as the discretization parameter and/or the singular perturbation parameter tends to zero.
Accepté le :
DOI : 10.1051/m2an/2016038
Mots-clés : Uniform estimates, finite-difference methods, discrete Sobolev spaces, fully-discrete sharp Gårding inequality, singular limits
@article{M2AN_2017__51_2_727_0, author = {Even-Dar Mandel, Liat and Schochet, Steven}, title = {Uniform discrete {Sobolev} estimates of solutions to finite difference schemes for singular limits of nonlinear {PDEs}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {727--757}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016038}, mrnumber = {3626417}, zbl = {1368.65163}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2016038/} }
TY - JOUR AU - Even-Dar Mandel, Liat AU - Schochet, Steven TI - Uniform discrete Sobolev estimates of solutions to finite difference schemes for singular limits of nonlinear PDEs JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 727 EP - 757 VL - 51 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2016038/ DO - 10.1051/m2an/2016038 LA - en ID - M2AN_2017__51_2_727_0 ER -
%0 Journal Article %A Even-Dar Mandel, Liat %A Schochet, Steven %T Uniform discrete Sobolev estimates of solutions to finite difference schemes for singular limits of nonlinear PDEs %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 727-757 %V 51 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2016038/ %R 10.1051/m2an/2016038 %G en %F M2AN_2017__51_2_727_0
Even-Dar Mandel, Liat; Schochet, Steven. Uniform discrete Sobolev estimates of solutions to finite difference schemes for singular limits of nonlinear PDEs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 727-757. doi : 10.1051/m2an/2016038. http://archive.numdam.org/articles/10.1051/m2an/2016038/
The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data. Nonlinearity 24 (2011) 2745–2761. | DOI | MR | Zbl
and ,A locally quadratic Glimm functional and sharp convergence rate of the Glimm scheme for nonlinear hyperbolic systems. Arch. Ration. Mech. Anal. 196 (2010) 455–487. | DOI | MR | Zbl
and ,On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35 (2015) 1125–1149. | DOI | MR | Zbl
, and ,A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. Vol. 20 of Oxford Lect. Ser. Math. Appl. Oxford University Press, Oxford (2000). | MR | Zbl
Incompressible type limit analysis of a hydrodynamic model for charge-carrier transport. SIAM J. Math. Anal. 45 (2013) 915–933. | DOI | MR | Zbl
, and ,Convergence de schémas aux différences finies pour des lois de conservation à plusieurs dimensions d’espace. C. R. Acad. Sci. Paris Sér. I Math. 310 (1990) 455–460. | MR | Zbl
and ,Quasineutral limit of an Euler-Poisson system arising from plasma physics. Commun. Partial Differ. Eq. 25 (2000) 1099–1113. | DOI | MR | Zbl
and ,Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number. J. Comput. Phys. 229 (2010) 978–1016. | DOI | MR | Zbl
,L. Even-Dar Mandel and S. Schochet, Convergence of solutions to finite difference schemes for singular limits of nonlinear evolutionary PDEs. To appear in ESAIM: M2AN (2016) DOI: 10.1051/m2an/2016029. | Numdam | MR
Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50 (2012) 544–573. | DOI | MR | Zbl
, and ,G.B. Folland, Introduction to partial differential equations. Princeton University Press, Princeton, N.J. (1976). | MR | Zbl
G.B. Folland, Fourier analysis and its applications. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1992). | MR | Zbl
A. Friedman, Partial differential equations, original edn. Robert E. Krieger Publishing Co., Huntington, New York (1976). | MR
Applications of Schochet’s methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989–1054. | DOI | MR | Zbl
,Discrete Sobolev-Poincaré inequalities for Voronoi finite volume approximations. SIAM J. Numer. Anal. 48 (2010) 372–391. | DOI | MR | Zbl
and ,Stable difference schemes for parabolic systems – a numerical radius approach. SIAM J. Numer. Anal. 35 (1998) 478–493. | DOI | MR | Zbl
,Pseudo-differential energy estimates of singular perturbations. Commun. Pure Appl. Math. 50 (1997) 821–865. | DOI | MR | Zbl
,B. Gustafsson, H.O. Kreiss and J. Oliger, Time dependent problems and difference methods. Pure and Applied Mathematics. John Wiley & Sons Inc., New York (1995). | MR | Zbl
On integration of parabolic equations by difference methods. I. Linear and quasi-linear equations for the infinite interval. Commun. Pure Appl. Math. 5 (1952) 155–211. | DOI | MR | Zbl
,Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34 (1981) 481–524. | DOI | MR | Zbl
and ,Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121 (1995) 213–237. | DOI | MR | Zbl
,Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001) 261–343. | DOI | MR | Zbl
, , , , , , and ,Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994) 324–343. | DOI | MR | Zbl
and ,On stability for difference schemes: A sharp form of Gȧrding’s inequality. Commun. Pure Appl. Math. 19 (1966) 473–492. | DOI | MR | Zbl
and ,R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). | MR | Zbl
A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Vol. 53 of Appl. Math. Sci. Springer-Verlag, New York (1984). | MR | Zbl
Stability theory of difference approximations for multidimensional initial-boundary value problems. Math. Comput. 40 (1983) 1–45. | DOI | MR | Zbl
,The extension of incompressible flow solvers to the weakly compressible regime. Comput. Fluids 32 (2003) 173–196. | DOI | MR | Zbl
, , and ,A weakly asymptotic preserving low Mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36 (2014) B989–B1024. | DOI | MR | Zbl
, , , and ,On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50 (1988) 19–51. | DOI | MR | Zbl
and ,A.A. Samarskii, The theory of difference schemes. Vol. 240 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York (2001). | MR | Zbl
The incompressible limit in nonlinear elasticity. Commun. Math. Phys. 102 (1985) 207–215. | DOI | MR | Zbl
,Fast singular limits of hyperbolic PDEs. J. Differ. Eq. 114 (1994) 476–512. | DOI | MR | Zbl
,The mathematical theory of low Mach number flows. ESAIM: M2AN 39 (2005) 441–458. | DOI | Numdam | MR | Zbl
,S. Schochet, Convergence of finite-volume schemes to smooth solutions of multidimensional hyperbolic systems. In preparation (2017).
The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence. Commun. Math. Phys. 106 (1986) 569–580. | DOI | MR | Zbl
and ,Flux splitting for stiff equations: a notion on stability. J. Sci. Comput. 64 (2015) 522–540. | DOI | MR | Zbl
and ,E.L. Smirnova, The stability of parabolic difference schemes with variable coefficients. Russian original published (1975). Vestnik Leningrad. Univ. Math. (1980) 373–381. | MR | Zbl
E.L. Smirnova, The invertibility and stability of difference operators with variable coefficients. Russian original published (1977). Vestnik Leningrad. Univ. Math. (1982) 209–215. | MR | Zbl
Accurate partial difference methods. II. Non-linear problems. Numer. Math. 6 (1964) 37–46. | DOI | MR | Zbl
,Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J. Numer. Anal. 28 (1991) 891–906. | DOI | MR | Zbl
,M.E. Taylor, Pseudodifferential operators. Vol. 34 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J. (1981). | MR | Zbl
M.E. Taylor, Partial differential equations, II. Qualitative studies of linear equations. Vol. 116 of Appl. Math. Sci. Springer-Verlag, New York (1996). | MR | Zbl
Convergence of difference approximations for quasilinear hyperbolic systems. Hiroshima Math. J. 11 (1981) 465–491. | DOI | MR | Zbl
,A simple proof of Lax–Nirenberg theorems. Commun. Pure Appl. Math. 23 (1970) 151–163. | DOI | MR | Zbl
,Incompressible limit for the compressible flow of liquid crystals. J. Math. Fluid Mech. 16 (2014) 771–786. | DOI | MR | Zbl
and ,On the stability of parabolic difference schemes. Math. Comput. 19 (1965) 1–13. | DOI | MR | Zbl
,Y.L. Zhou, Applications of discrete functional analysis to the finite difference method. International Academic Publishers, Beijing (1991). | MR | Zbl
On the general interpolation formulas for discrete functional spaces. I. J. Comput. Math. 11 (1993) 188–192. | MR | Zbl
,General interpolation formulas for spaces of discrete functions with nonuniform meshes. J. Comput. Math. 13 (1995) 70–93. | MR | Zbl
,Cité par Sources :