Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2213-2235.

In this paper, we study the superconvergence behavior of discontinuous Galerkin methods using upwind numerical fluxes for one-dimensional linear hyperbolic equations with degenerate variable coefficients. The study establishes superconvergence results for the flux function approximation as well as for the DG solution itself. To be more precise, we first prove that the DG flux function is superconvergent towards a particular flux function of the exact solution, with an order of O(h k+2 ), when piecewise polynomials of degree k are used. We then prove that the highest superconvergence rate of the DG solution itself is O(h k+3/2 ) as the variable coefficient degenerates or achieves the value zero in the domain. As byproducts, we obtain superconvergence properties for the DG solution and the DG flux function at special points and for cell averages. All theoretical findings are confirmed by numerical experiments.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017026
Classification : 65M15, 65M60, 65N30
Mots-clés : Discontinuous Galerkin methods, superconvergence, degenerate variable coefficients, Radau points, upwind fluxes
Cao, Waixiang 1 ; Shu, Chi-Wang 2 ; Zhang, Zhimin 3, 4

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China.
2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
3 Beijing Computational Science Research Center, Beijing 100193, China.
4 Department of Mathematics, Wayne State University, Detroit, MI 48202, USA.
@article{M2AN_2017__51_6_2213_0,
     author = {Cao, Waixiang and Shu, Chi-Wang and Zhang, Zhimin},
     title = {Superconvergence of discontinuous {Galerkin} methods for {1-D} linear hyperbolic equations with degenerate variable coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2213--2235},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017026},
     mrnumber = {3745170},
     zbl = {1382.65274},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2017026/}
}
TY  - JOUR
AU  - Cao, Waixiang
AU  - Shu, Chi-Wang
AU  - Zhang, Zhimin
TI  - Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2213
EP  - 2235
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2017026/
DO  - 10.1051/m2an/2017026
LA  - en
ID  - M2AN_2017__51_6_2213_0
ER  - 
%0 Journal Article
%A Cao, Waixiang
%A Shu, Chi-Wang
%A Zhang, Zhimin
%T Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2213-2235
%V 51
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2017026/
%R 10.1051/m2an/2017026
%G en
%F M2AN_2017__51_6_2213_0
Cao, Waixiang; Shu, Chi-Wang; Zhang, Zhimin. Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2213-2235. doi : 10.1051/m2an/2017026. http://archive.numdam.org/articles/10.1051/m2an/2017026/

S. Adjerid, K.D. Devine, J.E. Flaherty and L. Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1097–1112. | DOI | MR | Zbl

S. Adjerid and T.C. Massey, Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3331–3346. | DOI | MR | Zbl

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3113–3129. | DOI | MR | Zbl

S. Adjerid and T. Weinhart, Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems. Math. Comput. 80 (2011) 1335–1367. | DOI | MR | Zbl

M. Baccouch, A Posteriori Error Analysis of the Discontinuous Galerkin Method for Two-Dimensional Linear Hyperbolic Conservation Laws on Cartesian Grids. J. Sci. Comput. 68 (2016) 945–974. | DOI | MR | Zbl

W. Cao, C.-W. Shu, Yang Yang and Z. Zhang, Superconvergence of discontinuous Galerkin method for 2-D hyperbolic equations. SIAM J. Numer. Anal. 53 (2015) 1651–1671. | DOI | MR | Zbl

W. Cao and Z. Zhang, Superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. Math. Comput. 85 (2016) 63–84. | DOI | MR | Zbl

W. Cao, Z. Zhang and Q. Zou, Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 52 (2014) 2555–2573. | DOI | MR | Zbl

F. Celiker and B. Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension. Math. Comput. 76 (2007) 67–96. | DOI | MR | Zbl

Y. Cheng and C.-W. Shu, Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227 (2008) 9612–9627. | DOI | MR | Zbl

Y. Cheng and C.-W. Shu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47 (2010) 4044–4072. | DOI | MR | Zbl

B. Cockburn, S. Hou and C.-W. Shu, The Runge−Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV: The multidimensional case. Math. Comput. 54 (1990) 545–581. | MR | Zbl

B. Cockburn, G. Karniadakis and C.-W. Shu, The Development of Discontinuous Galerkin Methods. Springer Berlin Heidelberg (2000). | MR | Zbl

B. Cockburn, S. Lin and C.-W. Shu, TVB Runge−Kutta local projection discontinuous Galerkin finite element method for conservation laws, III: One dimensional systems. J. Comput. Phys. 84 (1989) 90–113. | DOI | MR | Zbl

B. Cockburn and C. Shu, TVB Runge−Kutta local projection discontinuous Galerkin finite element method for conservation laws, II: General framework. Math. Comput. 52 (1989) 411–435. | MR | Zbl

B. Cockburn and C. Shu, The Runge−Kutta discontinuous Galerkin method for conservation laws, V: Multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. | DOI | MR | Zbl

W. Guo, X. Zhong and J. Qiu, Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235 (2013) 458–485. | DOI | MR | Zbl

X. Meng, C.-W. Shu, Q. Zhang and B. Wu, Superconvergence of discontinuous Galerkin method for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50 (2012) 2336–2356. | DOI | MR | Zbl

W. H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM (1973).

Z. Xie and Z. Zhang, Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comput. 79 (2010) 35–45. | DOI | MR | Zbl

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50 (2012) 3110–3133. | DOI | MR | Zbl

Y. Yang and C.-W. Shu, Analysis of optimal superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33 (2015) 323–340. | DOI | MR | Zbl

Z. Zhang, Superconvergence of spectral collocation and p-version methods in one dimensional problems. Math. Comput. 74 (2005) 1621–1636. | DOI | MR | Zbl

Z. Zhang, Z. Xie and Z. Zhang, Superconvergence of discontinuous Galerkin methods for convection-diffusion problems. J. Sci. Comput. 41 (2009) 70–93. | DOI | MR | Zbl

Cité par Sources :