CARSTEN THOMASSEN

Transversals of circuits in the lexicographic product of directed graphs

Mathématiques et sciences humaines, tome 51 (1975), p. 43-45 http://www.numdam.org/item?id=MSH_1975_51_43_0

© Centre d'analyse et de mathématiques sociales de l'EHESS, 1975, tous droits réservés.

L'accès aux archives de la revue « Mathématiques et sciences humaines » (http:// msh.revues.org/) implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Math. Sci. hum. (13^e année, n°51, 1975, p.43-45)

TRANSVERSALS OF CIRCUITS IN THE LEXICOGRAPHIC PRODUCT OF DIRECTED GRAPHS

Carsten THOMASSEN

A directed graph G consists of a set V(G) of vertices and a set E(G)consisting of ordered pairs (x,y) (called edges) of distinct vertices x,y. The directed circuit of length n (n \ge 2) is the directed graph consisting of the vertices x_1, x_2, \ldots, x_n and the edges $(x_i, x_{i+1}), 1 \le i \le n-1$, and (x_n, x_1) . Let S_d denote the graph with q vertices and no edges. The lexicographic product G @ H of the directed graphs G, H can be defined as follows : For each vertex x of G, let H_x be a copy of H such that x,y $\in V(G)$, x \neq y implies $H_x \cap H_y = \emptyset$. Then add to the graph U H_x all edges (x_1, y_1) such that $x_1 \in H_y$, $y_1 \in H_y$ and $(x, y) \in E(G)$. that $x_1 \in H_x$, $y_1 \in H_v$ and $(x,y) \in E(G)$. G being a directed graph, we define $\tau(G) = \min \{m \mid \exists A \subseteq E(G) : |A| = m, G-A\}$ contains no directed circuit}. We also define $\tau_k(G) = \min \{m \mid \exists A \subseteq E(G) : |A| = m, G-A \text{ contains no directed}$ circuit of length less than k}. J.C.Bermond showed that $\tau(G \otimes H) \leq |V(G)| \tau(H) + |V(H)|^2 \tau(G)$ and conjectured [2, Conjecture 2] that equality holds. (The weaker conjecture for tournaments was made in [1]). We shall here prove this conjecture.

THEOREM 1

Let G and H be directed graphs with p and q vertices, respectively. Then $\tau(G \otimes H) = p\tau(H) + q^2 \tau(G)$.

Clearly $\tau(G) = \tau_k(G)$ when k > |V(G)|, so Theorem 1 follows from Theorem 2 below.

^{*} Dept of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Canada

THEOREM 2

Let G and H be directed graphs with p and q vertices, respectively. Then for <u>every</u> $k \ge 2$, $\tau_k(G \otimes H) = p\tau_k(H) + q^2 \tau_k(G)$.

<u>Proof</u>: Let $A \subseteq E(G)$, $B \subseteq E(H)$ such that $|A| = \tau_k(G)$, $|B| = \tau_k(H)$ and G - A, respectively H - B, contains no circuit of length less than k. From each of the graphs $H_x(x \in V(G))$ we delete the edges of B and for each edge of A we delete the corresponding q^2 edges of $G \otimes H$. We have then deleted $p\tau_k(H) + q^2\tau_k(G)$ edges from $G \otimes H$ and the resulting directed graph contains no directed circuit of length less than k. This proves the inequality $\tau_k(G \otimes H) \leq p\tau_k(H) + q^2\tau_k(G)$. The reverse inequality follows from Theorem 3 below. If \mathcal{F} is a family of directed graphs and G is a directed graph then an \mathcal{F} -<u>tranversal</u> of G is a subset A of E(G) such that every subgraph of G which is isomorphic to one of the graphs of \mathcal{F} contains an edge of A. We define $f(G, \mathcal{F})$ as the minimum number of elements in an \mathcal{F} -transversal of G. If, in particular, \mathcal{F} consists of the directed circuits of length less than k then clearly $f(G, \mathcal{F}) = \tau_k(G)$.

THEOREM 3

Let G and H be directed graphs with	p and	q vertices,	respectively,	and let
${\mathfrak F}$ be a family of directed graphs.	Then	f(G⊗H,牙) ≥ pf(H, 5)	+ q ² f(G,\$).

<u>Proof</u>: Since $G \otimes H$ is the edge-disjoint union of $G \otimes S_q$ and the graphs H_x , $x \in V(G)$, we have $f(G \otimes H, \mathcal{F}) \ge pf(H, \mathcal{F}) + f(G \otimes S_q, \mathcal{F})$, so it is sufficient to show that $f(G \otimes S_q, \mathcal{F}) \ge q^2 f(G, \mathcal{F})$. Let A be any \mathcal{F} -tranversal of $G \otimes S_q$. Select one vertex from each of the graphs $(S_q)_x$, $x \in V(G)$, and consider the subgraph of $G \otimes S_q$ spanned by these vertices. This subgraph is isomorphic to G, and there are q^P such subgraphs, say $G_1, G_2, \ldots, G_q P$. For each i, $1 \le i \le q^P$, $A \cap E(G_i)$ is an \mathcal{F} -tranversal of G_i so

(1)
$$|A \cap E(G_i)| \ge f(G_i, \mathfrak{F}) = f(G, \mathfrak{F})$$
 for each $i, 1 \le i \le q^p$.

Moreover, each edge of A is contained in precisely q^{p-2} of the graphs G_i , $1 \le i \le q^p$. Hence

(2)
$$q^{p-2} |A| = q^{p-2} |\bigcup_{i=1}^{q^{p}} (A \cap E(G_{i}))| = \sum_{i=1}^{q^{p}} |A \cap E(G_{i})|.$$

Combining (1) and (2) we obtain the inequality $q^{p-2}|A| \ge q^p f(G, \mathfrak{F})$ i.e. $|A| \ge q^2 f(G, \mathfrak{F})$. Since A is any \mathfrak{F} -transversal, $f(G \otimes S_q) \ge q^2 f(G, \mathfrak{F})$.

REFERENCES

- BERMOND J.C., "Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux", Math. Sci. hum., 37 (1972), 5-25.
- [2] BERMOND J.C., "The circuit hypergraph of a tournament", Proc.
 Colloquia Mathematica Societatis János Bolyai, Infinite and finite sets, Keszthely (Hungary), (1973), 165-180.