Carsten Thomassen

 Transversals of circuits in the lexicographic product of directed graphs

 Transversals of circuits in the lexicographic product of directed graphs}

Mathématiques et sciences humaines, tome 51 (1975), p. 43-45
http://www.numdam.org/item?id=MSH_1975__51__43_0
© Centre d'analyse et de mathématiques sociales de l'EHESS, 1975, tous droits réservés.
L'accès aux archives de la revue « Mathématiques et sciences humaines » (http:// msh.revues.org/) implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Math. Sci. hum. (13^{e} année, $n^{\circ} 51,1975, \mathrm{p} .43-45$)

TRANSVERSALS OF CIRCUITS IN THE LEXICOGRAPHIC PRODUCT OF DIRECTED GRAPHS

Carsten THOMASSEN ${ }^{*}$

A directed graph G consists of a set $V(G)$ of vertices and a set $E(G)$
consisting of ordered pairs (x, y) (called edges) of distinct vertices x, y. The directed circuit of length $n(n \geqslant 2)$ is the directed graph consisting of the vertices $x_{1}, x_{2}, \ldots, x_{n}$ and the edges $\left(x_{i}, x_{i+1}\right), 1 \leqslant i \leqslant n-1$, and $\left(x_{n}, x_{1}\right)$. Let S_{q} denote the graph with q vertices and no edges. The lexicographic product $G \otimes H$ of the directed graphs G, H can be defined as follows :

For each vertex x of G, let H_{x} be a copy of H such that $x, y \in V(G), x \neq y$ implies $H_{x} \cap H_{y}=\emptyset$. Then add to the graph $\underset{x \in V(G)}{H_{x}}$ all edges (x_{1}, y_{1}) such that $x_{1} \in H_{x}, y_{1} \in H_{y}$ and ($\left.x, y\right) \in E(G)$. G being a directed graph, we define $\tau(G)=\min \{m|\exists A \subseteq E(G):|A|=m, G-A$ contains no directed circuit\}.
We also define $\tau_{k}(G)=\min \{m|\exists A \subseteq E(G):|A|=m, G-A$ contains no directed circuit of length less than k. J.C.Bermond showed that
$\tau(G \otimes H) \leqslant|V(G)| \tau(H)+|V(H)|^{2} \tau(G)$ and conjectured [2, Conjecture 2] that equality holds. (The weaker conjecture for tournaments was made in [1]). We shall here prove this conjecture.

THEOREM 1

Let G and H be directed graphs with p and q vertices, respectively. Then $\tau(G \otimes H)=p \tau(H)+q^{2} \tau(G)$.

Clearly $\tau(G)=\tau_{k}(G)$ when $k>|V(G)|$, so Theorem 1 follows from Theorem 2 below.

[^0]THEOREM 2
Let G and H be directed graphs with p and q vertices, respectively. Then for every $k \geqslant 2, \tau_{k}(G \otimes H)=p \tau_{k}(H)+q^{2} \tau_{k}(G)$.

Proof : Let $A \subseteq E(G), B \subseteq E(H)$ such that $|A|=\tau_{k}(G),|B|=\tau_{k}(H)$ and G - A, respectively $H-B$, contains no circuit of length less than k. From each of the graphs $H_{x}(x \in V(G))$ we delete the edges of B and for each edge of A we delete the corresponding q^{2} edges of $G \otimes H$. We have then deleted $p \tau_{k}(H)+q^{2} \tau_{k}(G)$ edges from $G \otimes H$ and the resulting directed graph contains no directed circuit of length less than k.
This proves the inequality $\tau_{k}(G \otimes H) \leqslant p \tau_{k}(H)+q^{2} \tau_{k}(G)$. The reverse inequality follows from Theorem 3 below. If F_{1} is a family of directed graphs and G is a directed graph then an \mathscr{F}-tranversal of G is a subset A of $E(G)$ such that every subgraph of G which is isomorphic to one of the graphs of \mathcal{H} contains an edge of A. We define $f\left(G, \mathcal{F}_{\mathcal{F}}\right)$ as the minimum number of elements in an \mathcal{F}-transversal of G. If, in particular, \mathcal{F} consists of the directed circuits of length less than k then clearly $f\left(G, \mathscr{G}_{1}\right)=\tau_{k}(G)$.

THEOREM 3

Let G and H be directed graphs with p and q vertices, respectively, and let \mathcal{F}_{1} be a family of directed graphs. Then $f(G \otimes H, \mathcal{F}) \geqslant p f\left(H, \mathcal{F}_{\mathcal{F}}\right)+q^{2} f(G, \mathcal{F})$.

Proof : Since $G \otimes H$ is the edge-disjoint union of $G \otimes S_{q}$ and the graphs $H_{x}, x \in V(G)$, we have $f\left(G \otimes H, \mathscr{H}^{\prime}\right) \geqslant p f\left(H, \mathcal{F}_{\mathcal{H}}\right)+f\left(G \otimes S_{q}, \mathscr{F}_{1}\right)$, so it is sufficient to show that $f\left(G \otimes S_{q}, \mathcal{F}\right) \geqslant q^{2} f(G, \mathcal{F})$. Let A be any $\mathcal{F}^{-t r a n v e r s a l}$ of $G \otimes S_{q}$. Select one vertex from each of the graphs ($\left.S_{q}\right)_{x}$, $x \in V(G)$, and consider the subgraph of $G \otimes S_{q}$ spanned by these vertices. This subgraph is isomorphic to G, and there are q^{P} such subgraphs, say $G_{1}, G_{2}, \ldots, G_{q} p$. For each $i, 1 \leqslant i \leqslant q^{p}, A \cap E\left(G_{i}\right)$ is an \mathcal{F}-tranversal of G_{i} so
(1) $\left|A \cap E\left(G_{i}\right)\right| \geqslant f\left(G_{i}, \mathcal{F}^{\prime}\right)=f(G, \mathcal{F})$ for each i, $1 \leqslant i \leqslant q^{p}$.

Moreover, each edge of A is contained in precisely q^{p-2} of the graphs G_{i}, $1 \leqslant i \leqslant q^{p}$. Hence

$$
\begin{equation*}
q^{p-2}|A|=q^{p-2}\left|\bigcup_{i=1}^{q^{p}}\left(A \cap E\left(G_{i}\right)\right)\right|=\sum_{i=1}^{q^{p}}\left|A \cap E\left(G_{i}\right)\right| \tag{2}
\end{equation*}
$$

Combining (1) and (2) we obtain the inequality $q^{p-2}|A| \geqslant q^{p} f(G, \mathcal{F})$ i.e. $|A| \geqslant q^{2} f(G, \mathcal{F})$. Since A is any \mathscr{F}-transversal, $f\left(G \otimes S_{q}\right) \geqslant q^{2} f(G, \mathcal{F})$.

REFERENCES

[1] BERMOND J.C., "Ordres à distance minimum d'un tournoi et graphes partiels sans circuits maximaux", Math. Sci. hum., 37 (1972), 5-25.
[2] BERMOND J.C., "The circuit hypergraph of a tournament", Proc. Colloquia Mathematica Societatis János Bolyai, Infinite and finite sets, Keszthely (Hungary),(1973), 165-180.

[^0]: * Dept of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Canada

