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SPATIAL MODELLING AND THE STATISTICAL ANALYSIS

OF SPATIAL DATA IN HUMAN GEOGRAPHY

Robert HAINING*

1. INTRODUCTION

Geographical data analysis involves the analysis of one or more variables (i)

referenced by location (j) and or time (t). A geographical observation

(zi9illt) is sometimes, therefore, represented as an element of a data
1J

"cube" the three axes of which reference the variable set, the location set

and the time set (Haggett (1981)). Any particular analysis may either be on

a sub-block of the cube (for example multi-variate space-time data analysis)

or, to use a geological analogy, a "thin section" of the cube parallel to one

of the faces (for example multi-variate time series analysis, univariate

space-time data analysis or multi-variate spatial analysis), or a "transect"

of the cube again parallel to one of the faces (for example uni-variate time

series analysis or uni-variate spatial analysis).

Geographical data analysis is much concerned with the analysis of data

in space and time and since events often possess spatial and temporal

continuity, or persistence, the application of statistical methods in human

geography has to recognise that geographical data are unlikely to satisfy the

classical assumption of independence which under-pins much standard statis-

tical theory. It is the problems created when this assumption no longer holds

which are the focus of this paper.

Spatial data analysis and time series data analysis have several fea-
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tures in common. Space, like time, imposes an ordering on the data set which

must be recognised and retained in any analysis. It is not sufficient simply

to record the level of unemployment in a region over time -10% for six of the

months, 10,5% for three of the months and so on. The temporal order of values

can tell us much about whether unemployment is showing signs of increasing or

decreasing and when taken with other information may help to indicate why the

changes are taking place. Similarly the arrangement properties of values on

a map may provide important information on how the map pattern has arisen.

Spatial data like temporal data also show different scales of variation which

need to be separated out if any explanation is to be made of total variation.

Finally, spatial data like temporal data may consist of different eomponents

of variation and a distinction is often drawn between deterministic or func-

tional elements of a series and stochastic elements since these may be asso-

ciated with different types of generating processes.

But there are also differences between spatial and temporal data ana-

lysis. Time has direction - the past may have influenced the present, but

the present cannot have influenced the past (except in the sense that events

may be influenced by expectations of the future). Space has no such natural

direction and an event at one point can diffuse in all directions to

influence events elsewhere on the map. There are special exceptions to this

(the directionality implied by the hierarchical ordering of towns in a cen-

tral place system) but they are not so commonly encountered. Time is one-

dimensional whereas space is two-dimensional (again with the exception of

studies of linear features such as lines of communication) so that the depen-

dency structures in spatial data are likely to be more complex with the possi-

bility of different dependency patterns in different directions. Temporal

data are usually collected in terms of a regular partitioning (each month,

each year, ...) whereas spatial data are usually recorded in terms of an

irregular areal partitioning which may confound and mask the contributions

of different scales of variation. Finally, whereas time appears as a homo-

geneous medium within which events occur, space appears as a heterogeneous

medium and inter point and inter area distance relationships may be measured

in many different ways.

This paper will focus on uni-variate and multi-variate spatial data

analysis. There has been a considerable growth in interest in this area

amongst statisticians and others in the last few years reflected in the

recent publication of books by Ripley (1981), Cliff and Ord (1981) and Upton
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and Fingleton (1985) on spatial statistical methods. It is my impression how-

ever that these methods are still much less well known than those of time

series analysis. They are also much less commonly used, perhaps in part be-

cause of the lack of appropriate computer software. The area of spatial sta-

tistics shares common ground with some of the methods of geostatistics of

which the books by Matheron (1971) and Journel &#x26; Huijbregts (1978) are parti-

cularly important. Whilst the methods of geostatistics have penetrated areas

of physical geography and remote sensing they are not widely used in human

geography. In this paper therefore I shall focus on the first set of methods

for the analysis of spatial data, the problems that are encountered and pro-

vide specific examples of each of the main areas. In some of the examples the

data is of a space-time form. However, it is often appropriate to analyse
such data as a series of spatial "slices". This is because the time period
between successive observations is sufficiently long that observations can be

treated as independent in time.

In the following sections four classes of problems will be considered :

(1) how to make comparisons between two sets of regional data on a single
variable (such as income, mortality rates, etc.) recorded either for two

different areas or for the same area at two different points in time; (2)

how to establish the existence of a statistical relationship between data

on two or more variables collected in the same area at the same time; (3)

how to estimate missing values in a spatial record (often encountered in

census data); (4) the specification and estimation of "spatial process"
models.

In each of these sections an underlying issue is the problem of statis-

tical inference for data where independence of observations does not hold and

where the dependency structure in the data has to be estimated and built into

the estimation and inference procedures. In the discussion that follows there

are certain implicit assumptions and we now specify what these are. Variation

in spatial data is assumed to arise from three components : a deterministic

structured element, a stochastic structured element and a local random element

or noise. The first two elements are often represented in terms of the first

two moment properties of some probability distribution, the deterministic

element being equated with the mean (not necessarily constant) of that

probability distribution. In addition an implicit and untestable assumption

is that the variation in geographical data arises from one or more of these

three elements and represents a single realisation of some probability model.
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This implies that each observation is a specific value of a random variable

associated with the given location. Matheron (1971) suggested the term

"regionalized variable" for the random variable itself. This "conceptualisa-
tion" of reality in terms of probability models has many problems but is

justified according to Matheron (1971) if it allows us "to solve effectively

practical problems which would otherwise be unsolvable" (p.6). We take the

view that this is the case in the problems to be tackled in this paper. In

the next section we describe two approaches to the measurement of spatial
variation as an essential preliminary to considering the more specific pro-

blems identified above.

2. REPRESENTATIONS OF SPATIAL DEPENDENCY

Spatial statistical analysis in geography deals with finite regions (D) .

There are two approaches to the modelling of spatial processes on finite

spaces : (1) consider the process as the restriction to D of a stationary

process defined on a larger region; (2) consider the process as defined on

D with border or boundary values set (for example) to the mean of the pro-

cess. In the second case (unlike the first) the process is not stationary.

So, suppose V = {v..} denotes the matrix of autocovariances. In the case
- 

ij
of processes defined according to (1) , and also isotropic

where 02 is a scalar constant and di, J is the distance between regions i
ij

and j . In the case of processes defined according to (2)

where C(i,j) signifies that the autocovariance depends on the locations of

i and j .

If the first approach is adopted (usually when the study area contains

a large number of observations or is a subset of a larger area as often

happens with remotely sensed data) then it is usual to describe the depen-

dency properties of a set of data in terms of the correlations or covariances

of the probability distribution. If the second approach is adopted (usually
when there are few observations and the study area is a clearly delimited

areal unit such as an island sub-divided into counties or a city sub-divided

into wards or census tracks) then it will not be possible to estimate co-
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variances so that dependency properties are usually described in terms of the

relationships between the random variables. We consider each of these two

descriptive approaches now.

Suppose the underlying probability model is second order stationary

(for definitions see for example Journel and Huijbregts (1978)). If Z(x)
denotes the random variable at location x = (x,,,x2) and E denotes mathe-

matical expectation then

where m is a constant. Furthermore for each pair of variables IZ(x),Z(x+h)}
the spatial covariance exists and depends only on the separation distance

h , that is

Of course the mean may not be constant in which case m is replaced by a

function m(x) which in human geography is usually some order of trend

surface model (see Chorley and Haggett (1965)). When h = o then C(o) is

the variance of Z(x) .

C(h) is usually estimated for various distances ( h &#x3E; 0 ) or

distance bands by :

where z denotes an observation on Z and the sum is taken over all the

n(h) pairs that are separated by distance h . (Ripley (1981) p.80) notes

that the estimator is unbiased for small distances but that the sampling
variance depends on C(h) and that neighbouring values of the correlogram
are "substatially correlated"). Since, in general the mean is neither a

constant nor known it must be estimated from the data (usually a polynomial

equation where the order must also be determined) and an iterative procedure
is usually recommended in which the mean is estimated then the set of co-

variances which are in turn used to provide an improved estimate of the mean

and so on until convergence. Further complications arise if directional co-

variances are required (Ripley 1981). Finally, the covariance function is

often standardized to a spatial correlation function by dividing through

by C(0) .

Usually spatial correlation or covariance functions are used to provide
formal descriptions of the patterns of association between observations sepa-
rated by varying distances. Sibert (1975) computed directional spatial corre-
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lations to describe spatial variations in assessed land values in Ann Arbor,

Michigan as a preliminary step to developing a predictive model of land values.

In other instances the correlation function has been used to try to identify
characteristics of the underlying generating process as in a study by Cliff

et al (1975) on the diffusion of measles epidemics in S.W. England. Peaks

and troughs in an averaged spatial correlation function were interpreted as

suggesting a "central place plus wave diffusion" pattern of spread. Haining
(1981) using rural population density data for the American Mid West estimated

correlations and fitted specific models to these functions in order to test

a centre-satellite model of population dispersal.

Spectral analysis, the fourier transform of the spatial covariance func-

tion, has also been used to describe spatial variation. Tobler (1969) analysed

population density along U.S. highway 40 using spectral methods in order to

test whether central place competitiveness was important in structuring the

spatial organization of population. By and large however spectral methods

have not been widely used in human geography mainly because of the need for

large sample sizes and the irregular spatial distribution of much two dimen-

sional geographical data, although if these two conditions are not a problem
then this form of analysis has more satisfactory asymptotic sampling theory
than that based on covariances (Ripley 1981, p. 80).

We now turn to the second approach, that is the representation of de-

pendency in terms of variate relationships. In this approach attention focuses

directly on the random variables themselves. As Ripley (1981) shows there are

two distinct approaches to the formulation of variate interaction schemes -

the joint (or simultaneous) approach and the conditional approach. In the

former the dependency structure is modelled as a set of simultaneous equations
in which Z(x.) is expressed as a linear function of some subset of the other

-i

(usually neighbouring) random variables. For example in the case of a rectan-

gular lattice system where the sites are referenced by (i,j) on the two

orthogonal axes :

where p is a parameter that provides a measure of the strength of variate

interaction and e(i,j) is some random or noise process. In practice models

of this type are specified by first imposing a graph structure on the system
of sites. This specifies which random variables interact with one another. In

the case of irregular site distributions this is usually expressed by a con-
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tiguity or weighting matrix W = {Wk,t} where

Here k and t denote two sites and non zero values in W may be binary

(to denote interaction / no interaction) or weighted in order to reflect, for

example, how close together the two sites are. The choice of weighting scheme

is clearly an important one and there is much discussion in the literature on

how to specify W . In most applications the weighting matrix W is speci-
fied in advance to reflect relational properties between the sites. This is

particularly important in the case of the non lattice data typical of geo-

graphical data sets. Sometimes alternative weighting schemes are tried to

see how sensitive results are to the choice of W . Recommendations to try

to estimate W as if it were a set of parameters have generally not been

followed up in part because of the computational difficulty of such a pro-
cedure. Discussion of these issues can be found in Besag (1975) and Cliff

and Ord (1981) and Upton and Fingleton (1985).

There are subtle and important differences between the conditional and

joint approaches (see Besag 1974) and for the most part it is simultaneous

schemes of the sort described by (2.1) that rave been most often used in human

geography. It is important to realise that all variate schemes generate spe-
cific theoretical spatial correlations so that the set of empirical corre-

lations are sometimes used for model specification that is for choosing a

variable interaction scheme. However, for any finite lattice, models such as

(2.1) will not be stationary if sites on the edge of the lattice have only
2 (corner) and 3 (edge) neighbours. This can easily be shown by evaluating

[(! - P!i) T (! - P!i)] -1 which is the autocovariance matrix for (2.1) if the

e(i,j) process is N(0,1) . Therefore these models tie in with the second

approach to defining spatial processes on finite domains although for suffi-

ciently large lattices these models are often treated as stationary
(Whittle 1954).

Variate spatial interaction models have been used to describe spatial

patterns in human geography (Sibert 1975). Some models in human geography

are expressed in terms of univariate spatial relationships such as the

Bechmann-McPherson model of central place population sizes and are therefore

appropriately estimated using the estimation theory for these models. Haining
(1980) provides an example in this area. These schemes will figure more

prominently in section 5 below.
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So far in describing the use of correlation functions and variate inter-

action models we have assumed that spatial dependency is present in any given
set of data. To assume that such dependency may be present is a sensible pre-

caution in spatial analysis but as will be evident in later sections, before

adopting the sorts of procedures and remedial action this condition necessi-

tates, it is also sensible to test at some stage whether spatial correlation

is present in the data (statistically significant). In fact this was one of

the first problems to be tackled and two books by Cliff and Ord (1973, 1981)

describe the principal procedures that are available. The most commonly used

procedure - the Moran test - is closely related to an estimator for first

order spatial correlation. Upton and Fingleton (1985 Ch. 3) have reviewed

the range of test statistics and have attempted to evaluate their effective-

ness (Fig. 3.15). Tests are also available in the context of the variate

interaction model approach. For example a test of hypothesis on p in (2.1)

is equivalent to a test of spatial correlation since if p is not found to

be statistically significant this reduces the Z process to a random or

white noise process. In general however these sorts of tests are more diffi-

cult to apply than the simpler correlation - based tests. There are important
distributional differences between tests applied to raw data and those

applied to regression residuals and these have been discussed at length in

Cliff and Ord (1981).

This concludes the survey of methods for describing spatial dependency.

Although measures such as the correlation series can be used to yield subs-

tantive insights the next two sections are concerned with the application of

statistical methods where interest focuses on other data attributes rather

than on the correlation properties of the data per se. The problem is to

develop statistically valid procedures given the existence of spatial depen-

dency. We return to the question of modelling spatial dependency in the final

section.

3. UNI-VARIATE DATA ANALYSIS WITH SPATIALLY CORRELATED DATA

In this section we consider the problem of making comparisons between two

sets of regional data with respect to a single variable. A specific problem

might be to identify whether there is a significant difference in the popu-
lation mean value of a given variable between the two sets of data. We assume

initially a constant mean but consider in detail trend surface analysis where

the mean is not spatially constant. Throughout we assume C(h) &#x3E; 0 for all

h which is the most commonly encountered situation in human geography.
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If n observations (z ( 1 ) , ... , z (n) ) are drawn from a set of independ-
ent and identically distributed random variables with mean p and variance

for sufficiently large n , is distributed

N(~,02 z / n) . This fundamental results underpins standard statistical infer-
ence on means and comparisons between means.

On the other hand if the random variables are spatially correlated the

following problems arise :

(i) The true variance of z is greater than c2 /n even in those
z

situations where g2 z is known a priori.

(ii) In those situations where U2 must be estimated from the data the
z

classical estimator

is biased downwards.

A fuller discussion of these and other problems are given in Haining (1987

(c) and (d)) however the main problem is that by underestimating the true

sampling variance of z statistically significant differences may be infer-

red which are not valid at the chosen level of significance.

One approach to this problem is to select a model both for the popu-

lation mean (u) and the spatial correlation properties of the data. We

illustrate the method by reference to a specific problem where the mean was

not constant but was, instead, described by a trend surface.

Haining (1978) undertook a study of spatial crop yield variation from

an area of the American High Plains using data for over 40 counties from

1879 to 1969. Data were available every 5 or 10 years. The area chosen was

marginal in that precipitation declined significantly from east to west and

temperature increased from north to south. There were also soil gradients
which would be expected to lead to lower wheat and corn yields in the west.

The analysis sought to show whether these gradients were reflected in crop

yield gradients and whether the introduction of new farming methods (such as

dry farming in the early 1900’s) and improved strains (especially after

1945) and other human impacts would reflect in a gradual weakening of geo-

graphical crop yield trends over time.

The model specified was :
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where Z(i,j) denotes the crop yield (for wheat or corn) in county (i,j)
and X1 is the North-South axis and X2 is the East-West axis. The terms

S 0 31 ~1 ’ , and Q2 are the trend surface coefficients. The e(i,j) expres-

sion is a model for spatial correlation with u(i,j) a random or white

noise term. The term N(i,j) refers to the set of neighbours of the (i,j)

county, and f denotes a weighting of e(k) . In this case the inclusion

of the spatial correlation expression was justified on empirical and theo-

retical grounds. The method of estimation is that described by Ord (1975)

which is a modified version of the Cochrane-Orcutt procedure used in time

series analysis.

The correlation element of the model was not always significant but

the results, particularly for the corn yield data showed strong decreases in

yield both from east to west and north to south in the early years (1879-

1924) thereafter trends were no longer significant except for certain iso-

lated years(notably the severe drought year of 1934).

The central problem in applying standard statistical theory to data

which is not independent is that the amount of "information" (in the statis-

tical sense) available for parameter estimation is less that the sample size.

Spatial dependence in data implies that some of the information carried by an

observation is (partially at least) duplicated in other observations (in

particular the neighbouring observations). Thus, the effective sample size

(call this n’ ) is often substantially less than the actual sample size (n)

by an amount that depends on the level of spatial dependence present in the

data. It is this problem, the need to accomodate this dependency properly

and allow for it in constructing sampling variances which lies at the heart

of the inferential problem described in this section. Further discussion of

these issues together with other references is given in Haining (1978a).

There are certain problem areas however where the issue of "informa-

tion loss" can be turned to advantage. If each observation carries informa-

tion about other observations then if a census record for example is incom-

plete then the known data may be used to construct estimates of the missing

data. (The same principal underlies approaches to image reconstruction with

remotely sensed data (see Besag 1986) and map interpolation in geostatistics
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(Matheron 1971)). Bennett etal (1987) have suggested a maximum likehood pro-

cedure for interpolating missing records in census data which is based on

finding a model for the observed data on the given variable (usually some

order of trend surface model plus correlated error model as in (3.1)) and

then using this to provide estimates of the missing values. The procedure is

iterative in that parameter estimates are re-estimated on the basis of esti-

mates of the missing values at the previous round. There are benefits to

estimating missing values using only the variable itself as opposed to other

variables with which the specified variable is correlated since the latter

approach may compromise other sorts of (multi-variate) statistical analyses
the researcher may wish to carry out on the census data. In some cases it is

an estimate of the missing value (together with some measure of the likely
error) that is required. In other cases the aim is to analyse relationships
between variables and discarding census tracts where one or more variables

have missing values would lead to a considerable waste of data. In the

second case missing value estimates are only required in as much as they
facilitate the primary research objective. The procedure that has been deve-

loped is appropriate to both types of research problems.

4. MULTI VARIATE DATA ANALYSIS WITH SPATIALLY CORRELATED DATA

Correlation and regression are the most commonly utilised statistical

techniques for identifying relationships between variables in human geogra-

phy. Both techniques must be modified in their application if the geogra-

phical data are spatially correlated.

The Pearson product moment correlation coefficient, r , is a measure

of association for two gaussian variables ( Y , Z ) where

In the case of uncorrelated ( r = 0 ) gaussian variables where ob-

servations are independent

has Student’s t distribution with n-2 degrees of freedom. Bivand (1980)

showed that if Y and Z are spatially correlated the effects on the sam-

pling distribution could be severe with serious underestimation of the real

type I errors. Clifford and Richardson (1985) have suggested adjusting

the statistic (4.1) by replacing n with n’ (the effective sample size)
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where n’ (which is generally less than n if the data are correlated) is

dependent on the spatial correlation in the two sets of data. If nearest

neighbour correlation varies from 0.2 to 0.8 in both variables, failure

to make the suggested adjustment results in type I errors for a 5% test

ranging from 8.2% to 52% . When the adjustment is made type I errors are

restricted to the interval 3.2% to 7% . (See also Richardson and Hemon (1981,
1982)).

The correlation coefficient measures the relationship between two varia-

bles without taking explicit account of the actual positions of the observa-

tions (and the Clifford and Richardson adjustment is designed only to adjust

critical values for r for the information loss that spatial dependency intro-

duces). Tjostheim (1978) on the other hand developed an index for ranked data

that measures the degree of spatial association between two variables. The

index computes the distance between each pair of identically ranked observa-

tions on the two variables and thus specifically takes account of the physical

position of the reported data. In Tjostheims original paper his moment and dis-

tribution theory for the statistic assumed that neither of the two variables

was autocorrelated which, given the argument underlying this paper, suggests

that the statistic as originally developed is rather limited in applicability.
There have, however, been studies of the behaviour of the statistic in the

case of autocorrelated data (Glick 1982). Note that this statistic does pro-

vide additional information to that provided by a correlation coefficient and

Hubert and Golledge (1982) provide a nice illustration.

In regression modelling classical Gauss-Markov theory requires that the

errors (e(i)) are such that

If the errors are spatially correlated (as evidenced, for example by applying
one of the standard tests for residual autocorrelation - see Cliff &#x26; Ord

(1981)) then assumption (4.3) does not hold and the principal consequences
are that goodness of fit (r2) measures are inflated (as shown above) and

the true standard errors of the slope coefficients are also inflated so that

there is the risk that variables will be retained in the final model which

are not in fact statistically significant at the chosen level.
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Hepple (1976) gives an example of this problem arising. His study rela-

ted to the effects of sales taxes and transport charges on new cars on the ave-

rage second hand value of cars in the 49 states of the U.S.A. The independent
variable was new car price differentials (between states) attribuable to

sales tax and transport cost differences. The parameter estimate for the in-

dependent variable was 0.686 with a t value of 3.52 which was highly signi-
ficant. However autocorrelation was identified in the residuals and a model

for the errors as specified by (3.1) was introduced into the regression equa-
tion. The estimate of the parameter p was 0.816 (which is significant) and

the t value on the slope ocefficient of the independent variable fell to

0.099 which is no longer significant. Hepple (1979) has since given a

Bayesian analysis of the same regression problem. What is evident from this

problem and also stressed by Miron (1984) is that the detection of autocorre-

lation is often indicative of a misspecified model. Statistical models may be

used to allow for this misspecification but sometimes at the price (as in the

case of the Hepple example) of having no explanation at all of the observed

variation. In many instances it may therefore be preferable to visually

inspect the pattern of residuals in order to try to identify new variables

that might be responsible for the observed residual correlation as in the

case of a study by Haining (1981) of urban population variation in S.W.

Wisconsin in which variations in non-service sector employment were suggested

as possible causes of the residual correlation pattern. Sometimes residuals

of one sign may cluster strongly in one area of the map again indicating

possible variables to include in an augmented regression model as in a study

of income variation by Haining (1987b).

Recently Mardia and Marshall (1985) have placed the statistical analysis
of these sorts of spatial problems on a more rigorous foundation deriving

asymptotic results for the sampling distribution of maximum likelihood esti-

mators in the case of gaussian variables. They consider numerical algorithms
and discuss procedures for specifying and estimating the parameters of models

for the correlated error structure. An earlier paper by Ord (1975) is also

of importance in this context, however relatively little is still known about

the small sample properties of these estimators and inferential procedures.

5. SPATIAL STATISTICS AND SPATIAL PROCESSES

The term "spatial process" is an ambiguous one but is used here to refer to

any process in which the spatial distribution of objects (such as towns, farms,

shops, etc.) has an effect on the behaviour of variables (such as income levels,
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innovation adoption, price level etc) defined on those objects. So space it-

self is not a process but spatial relationships are one element in the speci-
fication of the process. The significance of this may become clearer with

examples.

In this section we concentrate on two types of processes in which spa-

tial considerations enter into model specification - these are spatial compe-
tition processes and spatial transfer or interaction processes. We examine a

competition process first.

Consider two retailers located on the same stretch of road in a city

selling (more or less) an identical product. Their potential customers are

regularly passing up and down the street and they may be, from time to time

at least, noting the prices charged for the goods at either or both of the

two stores. The decision of where to purchase by customers may, all other

things being equal, be influenced by the price charged at the two outlets.

If the retailers are sensitive to this state of affairs, a situation may well

develop in which prices charged at one retail outlet are responsive to prices

charged at the other retail outlet (and vice versa). We have described a

simple spatial competition process and if the problem is generalised to a

larger number of retailers a price "surface" may develop wihch in part re-

flects competition between retail sites.

The above arguments underlay two statistical models for spatial price

variation in petrol retailing developed by Haining (1984). We consider only
one of them here (developed from a very simple, neo-classical equilibrium

model) and for further discussion of the problem see Haining (1986). Let

p be an n x 1 vector and denote the prices charged at n retail outlets
-t

in a city or area. Further, let D and St denote n dimensional demand
-t -

and supply vectors at time t . A simple model for such spatial price compe-

tition might be specified as follows :

where c and e are n dimensional vectors of constants and A and B

are n xn ordered matrices whose rows and columns correspond to the label-

ling of the n sites. The demand vector is stochastic in that u is a

random vector with mean 0 and diagonal variance covariance matrix e2I .
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We assume that is such that

and writing then we assume

If market clearance takes place (clearly a very strong assumption)
and the equilibrium price vector (pe) is given by

-e

It follows that the equilibrium price at the ith retail outlet (p e (i))
can be expressed as a function of prices elsewhere, that is

Equation (5.1) describe an autoregressive spatial scheme with non negative
coefficients (a.. &#x3E; 0) and hence positive spatial autocorrelation at all

J
lags. Since (c(i)-e(i)) * 0 the model implies the presence of site effects.

The model is simplified by setting some of the a.. to 0 . This can
1J

be done to reflect the probable structure of intersite competition and the

distances over which such effects are expected to operate. The model defined

by (5.1) was hypothesized as a description of the variation in petrol prices
in S.W. Sheffield during two periods of intensifying price competition in

1982. The collection {a..} were defined on the basis of bilateral nearest
ij

neighbour proximity along the principal radial routeways leading to Sheffield.

The statistical model fitted was :

where x g (i) is the value for the gth regressor variable ( g = 1,...,k)
at site i and {wi.} is a binary contiguity matric reflecting the geogra-

ij

phy of bilateral nearest neighbour inter-site interaction. Data collected

on a single day were used to estimate {B} and p . However, data were
g

collected at several different times over a 7 month period and separate

estimates were obtained on each occasion. (Here then is another example of
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a space-time data set analysed as a set of independent spatial data sets.

This was justified on the grounds that response times in price adjustment
would be far more rapid than the time intervals between successive observa-

tions). The regressor variables reflected attributes of the retail sites

including whether they were on a main route or not and whether they combined

petrol retailing with other activites. Interaction effects were examining by

testing for the statistical significance of p . (For a similar example re-

lating to land price variation see Ancot and Paelinck (1981). House price
variation within an urban area may also show similar regularity arising from

the activities of estate agents, since the asking price at quite local scales

often reflects realised price levels attained in neighbouring "equivalent"

housing units).

We now consider an example of a spatial process in which dependency

originates from transfer mechanisms. Spatial income variation has attracted

a certain amount of theoretical and applied research effort over the last

decade or so (see for example Paelinck and Klaassen (1979)). The following

simple model has been used to describe geographical income variation :

where Y is and n xl vector of (n) area income levels, X is an n x 1

vector of exogenous expenditures including exports, investment and government

outlays and C is an n xl vector of endogenous expenditures (local con-

sumption by community residents). The parameter c (0  c  1) is the income

creating local propensity to consume, (see Tiebout (1960)). This model (5.2)

is often referred to as a "spatialized" Keynesian income model. It follows

that

Now in the context of, for example, a set of towns, the export income of a

town includes income accruing to the town as a result of purchases made by

non-residents. Haining (1987b) disaggregated the elements of X into "long
distance" export income (X ) arising from extra-regional trading and

-1
"short distance" export income (X2) linked to the transfer of income bet-

ween towns arising from non-local consumer spending. Given the definition of

C in (5.2) then consistent with that assumption is the assumption that



21

where and

The term {W i,j} is the propensity for income in j to create income in i
ij

where

The income model now has the form

which is analogous to a spatial autoregressive model. The structure of

can be simplified by invoking central place assumptions about which towns

are likely to receive significant levels of export income from other towns.

The system of relationships will tend to be hierarchical with income flowing
from the smaller urban places to the larger.

In both the studies outlined above it was important to specify the

spatial mechanisms that "bound together" the set of sites and hence imposed
an ordering on the spatial system. Different orderings can be compared by

fitting the models with W matrices chosen to reflect different interaction

hypotheses (Anselin 1986). In terms of the variables included most models

will be "hybrid" that is, will contain both a traditional regression struc-

ture and spatialized variables. In some cases these spatial effects will

arise from a small number of variables and can be explicitly stated within

the model (as exemplified in this section and where the independent varia-

bles are spatially lagged). In other cases where the sources of spatial

dependence may be large in number and difficult to specify with any preci-
sion they may be subsumed within a statistical model for the error structure

(as exemplified in section 4). Doreian (1980, 1981) provides examples of

both types of approaches applied to the same problem.

The statistical theory for estimating the parameters of these models

and the large sample theory for inferential testing is extensively reviewed

in Upton and Fingleton (1985).

6. CONCLUSION

This paper has surveyed some of the main areas of application of spatial
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statistics in human geography. Not only is this area of relevance to general

problems in univariate and multivariate data analysis it is also of impor-

tance in that a number of geographical models involve a spatial specification

so that methods are needed to estimate and test for spatial relationships in

a set of data. We have only touched the surface of the latter area for in

addition to the competition and transfer mechanisms described in section 5

there is the wider class of spatial diffusion processes. These processes

underly many observed geographic distributions involving information transfer

(in the case of adoption patterns) or contagion processes in the case of the

spread of diseases (Cliff et al 1975).

We have also not explored the relevance of spatial statistical theory
in the setting up of computer based data storage, data retrieval, data mani-

pulation and display systems (Geographic Information Systems) or in the ana-

lysis of remotely sensed data. The need to recognise the importance of spa-
tial statistics in both areas has recently been emphasized in the publication
of the Chorley Report (1987). These and other issues have been reviewed else-

where (Haining 1987c). In conclusion however, it is important to emphasize
that these methods are of general relevance in all areas of the social

sciences concerned with the analysis of spatially referenced data.
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