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CONDORCETS THEORY OF VOTING

H.P. YOUNG1

RÉSUMÉ 2014 Théorie du vote selon Condorcet
Condorcet pensait que le but d’un vote est de faire un choix qui soit le meilleur pour la société. Selon ce point de
vue, il y a un choix qui est objectivement le meilleur, un autre vient en second et ainsi de suite.

Malheureusement, les électeurs se trompent quelquefois, ils perçoivent mal quel est le meilleur choix. Par
conséquence, pour l’établissement d’une règle de vote, l’objectif devrait être de choisir l’alternative qui est la plus
probablement la meilleure. Condorcet résolut ce problème en utilisant une forme d’estimation par le maximum
de vraisemblance. La procédure qu’il en a tirée peut aussi être justifiée à partir d’une perspective axiomatique
moderne. C’est la seule fonction du choix social qui satisfasse une variante de l’axiome d’indépendance en même
temps que plusieurs autres propriétés classiques.

SUMMARY 2014 Condorcet believed that the purpose of voting is to make a choice that is "best" for society.
According to his view, there is one choice that is objectively best, another that is second-best, and so forth.
Unfortunately, voters sometimes make mistakes ; they misperceive what is best. In designing a voting rule,
therefore, the objective should be to choose the alternative that is most likely to be best. Condorcet solved this
problem using a form of maximum likelihood estimation. The procedure that he derives can also be justified
from a modern axiomatic perspective. It is the unique social welfare function that satisfies a variant of
independant of irrelevant alternatives together with several other standard properties.

[Our aim] to inquire by mere reasoning, what degree of
confidence the judgment of assemblies deserves, whether
large or small, subject to a high or low plurality, split into
several different bodies or gathered into one only,
composed of men more or less wise.

Condorcet

A central problem in democratic theory is to justify the principle of majority rule. Why should
the opinion of a majority of citizens (or their elected representatives) bind the rest of society ?
One of the earliest and most celebrated answers to this question was attempted by Rousseau in
The Social Contract ( 1762). The opinion of the majority is legitimate, said Rousseau, because
it expresses the "general will". "When a law is proposed in the people’s assembly, what is asked
of them is not precisely whether they approve of the proposition or reject it, but whether it is in
conformity with the general will... each by giving his vote gives his opinion on this question,
and the counting of votes yields a declaration of the general will. When, therefore, the opinion
contrary to my own prevails, this proves only that I have made a mistake, and that what 1
believed to be the general will was not so" (1962, 13).

1 H.P. Young is Professor of Public Policy and Applied Mathematics, School of Public Affairs, University of
Maryland, College Park, MD 29742, U.S.A.
Article paru dans American Political Science Review, Vol.82, n04, december 1988. Nous remercions American
Political Science Association pour leur aimable autorisation de publier cet article.(N.D.L.R.)
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This ambiguous and slightly disquieting idea was given a more satisfactory expression some
twenty years later by the mathematician and social philosopher Marie Jean Antoine Nicolas
Caritat, Marquis de Condorcet2. In his remarkable work, Essai sur l’application de l’analyse
à la probabilité des décisions rendues à la pluralité des voix (1785), Condorcet proposed the
following argument for decision by majority : Enlightened voters honestly attempt to judge what
decision will best serve society. They may occasionally judge wrongly. But assuming that they
are more often right than wrong, the majority opinion will very likely be "correct". This is just
an application of the law of large numbers and is intuitively obvious when there are only two
possible decisions. Condorcet rigorously demonstrated this proposition using the newly
developed calculus of probabilities. He then proceeded to show how the idea could be elaborated
into a whole series of results about the reliability of decisions of a voting body, depending on its
size, the competence of its members, and the number of alternatives under consideration. These
"jury theorems" have recently attracted considerable attention (Grofman and Owen 1986 ;
Grofman, Owen, and Feld 1983 ; Urken and Traflet 1984)3.

It has not been widely recognized, however, that Condorcet showed how the same
arguments could be extended to the case of more than two decisions. He was, of course, the
first to realize the complications that arise in this case, namely, the possibility of cyclic
majorities. But he went on to suggest - or at least came very close to suggesting - a definite rule
for ranking any number of alternatives even when cyclic majorities are involved. Admittedly,
Condorcet’s argument is difficult to follow and full of inconsistencies. Moreover, the rule that
he proposed is at variance with the algorithm that he proposed for computing it. Nevertheless,
his stated goal is clear : to find the social decision that is most likely to be "correct".

First 1 summarize Condorcet’s proposal and dispose of the claims made by some
commentators that Condorcet gave no solution for the general case. 1 then show that
Condorcet’s method can be interpreted as a statistical procedure for estimating the ranking of the
candidates that is most likely to be correct. If only one candidate is to be selected, however, then
an earlier method proposed by Condorcet’s rival Borda often gives better results. In the final
section 1 show that Condorcet’s decision rule can also be justified in modem social choice terms.
It is the unique ranking procedure that satisfies a variant of independence of irrelevant
alternatives together with several other standard conditions in social choice theory.

CONDORCET’S MODEL

For Condorcet, as for Rousseau, the object of voting is not merely to balance subjective
opinions ; rather, it is a collective quest for truth. In any field of candidates (or agenda of
alternatives) there is some truly best candidate, a truly second-best candidate, and so forth. What
is meant here be truly best ? Ultimately it is an undefined term, a notion that is postulated in
order to make the theory work -- like the ether in classical physics. To be sure, in some
situations the notion of "best" decision is quite realistic. An example is trial by jury, where
the group decision problem is to determine guilt or innocence. Another is the pooling of
expert opinions about an observable event, like the state of the economy or tomorrow’s
weather4.
2 Condorcet did not explicitly say that he was addressing Rousseau’s problem, but Rousseau’s ideas would have
been much discussed in Condorcet’s circles. Baker (1975, 229) also suggests that Condorcet drew his inspiration
from Rousseau. Grofman and Feld (1988) explore the connections between Condorcet’s and Rousseau’s ideas in

eater depth.Poisson (1837) studied a similar set of questions using probabilistic methods. See also Gelfand and Solomon
(1973) for recent work in the Poisson tradition.
4 A related problem is to rank teams or players based on their win-loss records (as in baseball, tennis or chess).
Condorcet’s model can be used to estimate the most likely ordering of the players by ability (see Batchelder and
Bershad 1979 ; Good 1955 ; Jech 1983).
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For the present let us grant Condorcet’s hypothesis that the notion of a "correct" decision
also applies to political decision making. Thus, voters evaluate candidates for political office in
terms of their ability to lead. Legislators consider bills in terms of their potential contribution to
the public welfare. Granted that voters are at least sometimes mindful of the public interest and
vote accordingly, Condorcet’s argument proceeds along the following lines. People differ in
their opinions because they are imperfect judges of which decision really is best. If on balance
each voter is more often right than wrong, however, then the majority view is very likely to
identify the decision that is objectzvely best. In other words, the majority opinion gives the best
estimate, in a statistical sense, of which candidate is most likely to be best. One of Condorcet’s
major contributions was to show how this idea can be generalized to the case of many
candidates.

Consider a list of candidates (or decisions) that are voted upon pairwise. Assume that each
voter, when faced with a comparison of the form, "Is a better than b or b better than a ?"
chooses correctly with some fixed probability greater than 1/2. Each voter judges every pair of
candidates and the results are tallied in a voting matrix. Table 1 shows a voting matrix with 13
voters and three candidates. Each entry in the matrix gives the total number of votes obtained by
the row candidate over the column candidate. For example, the comparison a versus b yields
eight votes in favor of a, five in favor of b. The comparison b versus c yields eleven votes
for b and two for c. The comparison a versus c yields six for a and seven for c. Notice that
this vote entails the cyclical majority a &#x3E; b, b &#x3E; c, c &#x3E; a.

Given a series of pairwise votes as in Table 1, the problem posed by Condorcet is to find the
ranking of all the candidates that is most likely to be correct, that is, the ranking that would have
produced the observed votes with highest probability. At first blush it might appear that this
problem is insoluble unless the competency levels of the voters are known. This difficulty can
be circumvented if one makes the simplifying assumption (which Condorcet did) that the voters
all have the same competence. In this case the answer tums out to be independent of the level of
competence, as 1 shall show in the next section. Here we shall content ourselves with
Condorcet’s statement of the solution.

First some terminology is required. In Condorcet’s lexicon, an "opinion" is a series of
pairwise comparisons on the alternatives. Each pairwise comparison is called a "proposition"
and written a &#x3E; b, etc. An opinion is said to be "impossible", "contradictory", or "absurd" if
some of the propositions composing it form a cycle, such as a &#x3E; b, b &#x3E; c, c &#x3E; a. Normally,
each individual voter is able to rank all of the candidates in a consistent order. This is not

necessarily true of the aggregate opinion, however, as Table 1 demonstrates5. To break such
cyclic majorities, Condorcet proposed the following method6 :

Table 1. Voting Matrix with Three Alternatives and 13 Voters

5 The following preference data would yield the pariwise votes in Table 1 : six voters have preference abc, five
voters have preference bca, and two voters have preference cab. It bears emphasizing, however, that Condorcet
dit not think of the voters’ opinions as expressing their personal preferences. Rather, they represent the voters’
best judgments as to which candidate in each pair is the better one.
6 In this translation 1 have modified the mathematical notation slightly to conform with modem conventions.
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1. All possible opinions that do not imply a contradiction reduce to an indication of the order of merit that one
judges to exist among the candidates... therefore (for n candidates one would have n(n-1) ... 2 possible
opinions.
2. Each voter having thus given his or her opinion by indicating the candidates’ order of worth, if one compares
them two by two, one will have in each opinion n(n-l)/2 propositions to consider separately. Taking the
number of times that each is contained in the opinion of one of the q voters, one will have the number of voices
who are for each proposition.
3. One forms an opinion from those n(n-1)/2 propositions that agree with the most voices. If this opinion is
among the n(n-1)... 2 possible opinions, one regards as elected the subject to whom this opinion accords the

preference. If this opinion is among the 2n(n-1)12 - n(n-1)... 2 impossible opinions, then one successively
deletes from that impossible opinion the propositions that have the least plurality, and one adopts the opinion
from those that remain, (1785,125-26).

Let us apply this rule to the situation in Table 1. First we are to choose the three propositions
having a majority, namely b &#x3E; c with eleven votes, a &#x3E; b with eight votes, and c &#x3E; a with
seven votes. Since these three propositions form a cycle, however, we delete the proposition
with smallest plurality, namely c &#x3E; a. This leaves the combination b &#x3E; c and a &#x3E; b (and
implicitly a &#x3E; c), which implies the ranking a &#x3E; b &#x3E; c.

The rule is clear enough in the case of three alternatives. However, in the general case some
ambiguities arise. The difficulty lies in the phrase "successively deletes" in step 3. Taken
literally, it means the following : if there are cycles in the propositions selected in step 2, delete
first the proposition having the least number of votes in its favor. (This proposition might or
might not be contained in a cycle). If any cycles remain, delete next the proposition with the next
lowest number of votes in its favor, and so forth. Continue until all cycles are eliminated.

There are several reasons why this is probably not what Condorcet meant to say. In the first
place, the procedure may yield an ambiguous ordering of the candidates. Consider Table 2, with
twenty-five voters and four candidates.

Table 2. A Voting Matrix with 25 Voters and Four Alternatives

In step 2 of Condorcet’s algorithm one would select the six propositions having greatest
majorities. In descending size of majority, these are c &#x3E; d, a &#x3E; d, b &#x3E; c, a &#x3E; c, d &#x3E; b,
b &#x3E; a. According to a literal reading of step 3, one would first delete the proposition b &#x3E; a, as

it has the smallest majority in its favor. But this does not result in an "opinion" because one
cycle still remains : b &#x3E; c, c &#x3E; d, d &#x3E; b. Therefore one would delete the proposition d &#x3E; b,
as it has the next-smallest majority in its favor. All cycles are now eliminated. But there is a
difficulty : in the resulting partial order both a and b are undominated. Either one of them could
be interpreted as the top-ranked candidate, so the outcome is indeterminate.

It seems more likely that Condorcet meant to reverse, rather than simply delete, the weakest
propositions. According to this interpretation one would first reverse the proposition with the
least majority (thus b &#x3E; a becomes a &#x3E; b), then reverse the proposition with the next-least
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majority (thus d &#x3E; b becomes b &#x3E; d) and so forth until no cycles remain. In the above
example the resulting opinion is abcd. Unfortunately, this answer does not square with the rest
of Condorcet’s argument. His stated intention is to choose "the most probable combination of
opinions", that is, the set of propositions that contains no cycles and is supported by the largest
number of pairwise votes. The total number of votes supporting the ranking abcd is 89. (That
is, the sum of the votes for a over b, a over c, a over d, b over c, b over d, and c over
d equals 89). But this is not a maximum. The ranking bacd is supported by a total of 90
pairwise votes. This ranking is obtained by reversing exactly one majority proposition, d &#x3E; b.
Note that this is not the proposition with smallest majority.

At this point we might be tempted to throw up our hands and declare, as previous
commentators have, that "the general rules for the case of any number of candidates as given by
Condorcet are stated so briefly as to be hardly intelligible... and as no examples are given it is
quite hopeless to find out what Condorcet meant" (E.J. Nanson as quoted in Black 1958, 175).
Even the influential mathematician Isaac Todhunter found Condorcet’s argument completely
exasperating : "The obscurity and self-contradiction are without any parallel, so far as our
experience of mathematical works extends... no amount of examples can convey an adequate
impression of the evils" (Todhunter 1949, 352).

In fact, Condorcet’s overall intention is quite clear. It is to find the most probable
combination of opinions. In describing his method he seems to have used the term
"successively deletes" rather loosely as a heuristic for computing the solution~. (He may also
have believed, mistakenly, that successive deletion always does give the most probable
combination). But there appears to be little doubt about his objective. Hence I propose to amend
Condorcet’s statement of the rule as follows :

3’. One forms an opinion from those n(n-1)/2 propositions that agree with the most voices. If this opinion is
among the n(n-1)... 2 possible opinions, one regards as elected the subject to whom this opinion accords the

preference. If this opinion is among the 2n~n-1)~2 - n(n-1)... 2 impossible opinions, then one reverses in that
impossible opinion the set of propositions that have the least combined plurality and one adopts the opinion
from those that remain.

It seems reasonably likely that this is what Condorcet meant to say. In any case, it is the only
interpretation that is consistent with his goal of finding the ranking that is most likely to be
correct.

CONDORCET’S METHOD AS A STATISTICAL HYPOTHESIS TEST

From a historical standpoint, Condorcet’s theory is particularly interesting because it represents
one of the earliest applications of what today would be called "statistical hypothesis testing".
Based on a sample of observations, one wishes to infer which of several underlying but
unobservable states of nature is most likely to be true. This approach is known as maximum
likelihood estimation. All that is required is a model of how the observed quantities depend
probabilistically on the unobservable state of nature. In Condorcet’s scheme of things a state of
nature corresponds to the true or correct ordering of the candidates. This datum is essentially
unobservable. What can be observed are the votes of the representatives who are attempting to
read the true state of nature.

Michaud (1985) comes to a similar conclusion.
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Condorcet assumed, first, that in any pairwise comparison each voter will choose the better
candidate with some fixed probability p, where 1/2  p 1 and p is the same for all voters 8
Second, every voter’s judgment on every pair of candidates is independent of his or her
judgment on every other pair. Finally, each voter’s judgment is independent of the other voter’s
judgments (a significant assumption).

Consider again the voting matrix in Table 1. Suppose that the true ranking is abc, that is, a
first, b second, c third. A vote for a over b will occur with probability 1 - p, whereas a vote
for b over a will occur with the lesser probability 1 - p. The combined probability of
observing the 39 pairwise votes in Table 1 is therefore

Similarly, the probability of observing the results in Table 1 if the true ranking is acb would
be

The multiplicative coefficient is the same for all six rankings, so their relative likelihoods are
as in Table 3. For each ranking the exponent of p is the sum of all pairwise votes that agree
with the ranking, and the exponent of ( 1-p) is the sum of all pairwise votes that disagree with it.
Assuming that p &#x3E; 1/2, which seems to be a credibly optimistic view of human judgment, it
follows that the most likely ranking is the one with the highest exponent of p. In the above
example the answer is abc.

Table 3. Likelihoods of Six Rankings Based on Table 1 Data

In general, suppose that there are n voters and m candidates or alternatives a 1’’’.’ am. Let

n~~ be the total number of votes that ai receives over a.. Assume that every voter registers an
opinion on every pair of candidates, so that n ii + n}i = n for all i ~ j. Let R be a complete
ranking of the candidates, where aiRaj means that ai is preferred to aj. The argument outlined
above is easily generalized to show that a ranking R has maximum likelihood if and only if it
maximizes 1~, the sum over all pairs ij such that aira.. That is, the maximum likelihood

8 1 exclude the case p= 1, because this would imply that all voters agree with probability one. The case where
the voters have different a priori probabilities of being right is treated in Young 1986 (see also Nitzan and
Paroush [ 1982] and Shapley and Grofman [ 1984]).



51

ranking is the one that agrees with the maximum number of pairwise votes, summed over all
pairs of candidates. This is equivalent to the statement of Condorcet’s rule given in 3’. Note that
it does not depend on the value of the success rate p as long as all voters have the same success
rate, which is larger than one half. This rule is very natural and, not surprisingly, has been
rediscovered by other writers. In particular it was proposed in a different guise by John Kemeny
(1959 ; see also Kemeny and Snell 1960) and is sometimes known in the literature as
"Kemeny’s rule" (Young and Levenglick 1978).

CONDORCET VERSUS BORDA

Another pioneer in the theory of elections was the Chevalier Jean Charles de Borda. Like
Condorcet, Borda was a member of the French Academy of Sciences and an important figure in
official scientific circles. Unlike Condorcet, he was an applied scientist with a practical bent. He
was noted for his work in hydraulics, mechanics, optics, and especially for the design of
advanced navigational instruments. He also captained maritime vessels. Because of his expertise
in measurement, he served on the committee for determining the standard weights and measures
in the new metric system (Mascart 1919).

In 1770, some 15 years prior to the publication of Condorcet’s treatise on elections, Borda
read a paper to the academy on the design of voting procedures (see Borda 1784). Exactly what
prompted Borda to sail in these uncharted waters is unclear. Possibly he was concemed with
reforming the election procedures in the academy itself. He began by pointing out the defects in
the customary "first-past-the-post" system whereby the candidate with the largest plurality is
elected. When there are many candidates, this procedure can easily elect someone who is
endorsed by only a small minority of the electorate. Instead, Borda suggested, the election
procedure should be based on each voter’s entire rank-ordering of the candidates. The correct
candidate to choose is the one that on average stands highest in the voters’ lists.

Operationally, the method works as follows : each voter submits a list in which all of the
candidates are rank-ordered. In each list a candidate who is ranked last receives a score of zero,
a candidate who is ranked next-to-last receives a score of one, a candidate who is ranked next
above that receives a score of two, and so forth. Thus the score of a candidate in any particular
list is equal to the number of candidates ranked lower on that list. The scores of the candidates
are summed over all voter lists and the candidate with highest total score is elected.

If Borda’s objective was practical reform, he appears to have been successful, for something
like his method was subsequently adopted for the election of new members to the academy9.

Condorcet was certainly aware of Borda’s work. Indeed he introduced the method in the
Essai with the following remark : "As the celebrated Geometer to whom one owes this method
has published nothing on this subject, 1 have taken the liberty of citing it here" (1785,
clxxix)1°. Condorcet repeatedly refers to Borda, not by name, but as "the celebrated
Geometer". The tone is ironical. From his private correspondence it is clear that Condorcet held
Borda’s work in low esteem and considered him a personal enemy within the academy. For
example, in a letter to Turgot (1775), he gave this assessment : "[M. Malesherbes] makes a great
case for Borda, not because of his memoirs, some of which suggest talent (although nothing

9 For reasons that remain obscure, Borda’s method was jettisoned by Napoleon after his own election to
membership (Mascart 1919).
In a footnote, Condorcet adds that his own treatise "had been printed in its entirety before I had any
acquaintance with this method [of Borda], apart from the fact that 1 had heard several people speak of it" (1785,
clxxix).
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will ever come of them, and no one has ever spoken of them or ever will) but because he is what
one calls a good academician, that is to say because he speaks in meetings of the Academy and
asks for nothing better than to waste his time doing prospectuses, examining machines, etc., and
above all because, feeling eclipsed by other geometers, he, like d’Arcy, has abandoned
geometry for petty physics" (quoted in Henry 1883). The contempt with which Condorcet
viewed Borda’s scientific contributions may help to clarify an abrupt shift in Condorcet’s
argument. As we have already seen, Condorcet’s initial objective was to design a method for
estimating the "true" ranking of the candidates. But he also recognized that the problem is often
one of determining which single candidate is most likely to be best (1785, lxi-lxv,122-23). At
first glance the solution would appear to be obvious : first rank all of the candidates and then
choose the one that is top-ranked. But this is not necessarily the most convincing answer.

Consider the following example of Condorcet (1785, lxiii) with 60 voters and three
candidates. Here c has a simple majority over both a and b, and b has a simple majority over
a. So there are no cycles, and the ranking by Condorcet’s rule is cba. That is, cba is the
ranking most likely to be correct. But is c the candidate that is most likely to be the best (i.e.,
top-ranked in the true ranking) ?

Table 4. A Voting Matrix with 60 Voters and Three Candidates.

Not necessarily. Candidate c will be best if two propositions hold : namely, if c is better
than a(c &#x3E; a) and c is better that b(c &#x3E; b). We are therefore interested in the joint probability
of these two statements being true. If c &#x3E; a, then the probability of observing the voting pattern
in Table 4 (31 votes for c versus 29 for a) is (60!/31!29!)p31(1 - p)29. If the contrary holds
(a &#x3E; c), then the probability of observing 31 votes for c versus 29 for a is (b0!/31 ! 29! )p29( 1
- p)31. Assume that a &#x3E; c and c &#x3E; a are a priori equally likely. Then the probability of
observing the vote 31 for c, 29 for a is

By Bayes’ rulell it follows that the posterior probability of c &#x3E; a, given the observed vote, is

that is,

Similarly,

11 Condorcet arrived at this answer intuitively, not by an explicit application of Bayes’ rule.
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Therefore the posterior probability that c is best is

The posterior probability that b is best is

And the posterior probability that a is best is

Which of a, b, or c has the highest posterior probability ? The answer depends on the
assumed value of the competence level p. If p is close to one, then the controlling factor is the
size of the exponent of 1 - p. The most probable candidate will be the one whose weakest
comparison is as strong as possiblel2. In this case the answer would be c, because the lowest
number of votes that c receives in any pairwise contest is 31, while a’s weakest showing is 23
and b’s is 29.

Suppose instead that p is close to 1/2, that is, p = 1/2 + c for some small t &#x3E; 0. In this case
the relative probabilities depend essentially only on the numerators of the above three

expressions. Substituting in p = 1/2 + c we find that the relative probabilities of a,b and c can
be approximated as follows :

If we expand these expressions using the binomial formula and drop all powers of c higher
than the first, then the relative probabilities of the three candidates are approximately as follows :

In each case the coefficient of t is the sum of all pairwise votes for the candidate minus the sum
of all pairwise votes against the candidate. Since the total number of votes (for and against) is
the same for all candidates, the coefficient ofc will be maximized for the candidate that receives
the most pairwise votes over all others. In this case the answer is b.

This argument is quite general. For any number of voters and any number of alternatives, if
p is sufficiently close to 1/2, then the candidate with the highest probability of being best is the
one that receives the most pairwise votes. This is precisely the Borda candidate. The reason is
that the Borda score of a candidate in each individual voter’s list is equal to the number of
candidates ranked below it, that is, the number that it beats. So a candidate’s total Borda score is
its row sum in the voting matrixl3.

12 This "minimax" rule was proposed in modem times by Kramer (1977).
13 Borda himself gave this alternative statement of his method.
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Borda’s method is therefore one solution to Condorcet’s problem. In particular, a candidate
that beats every other by simple majority does not necessarily have the strongest claim to being
the best candidate ; the Borda winner may be strongerl4. Condorcet apparently realized this
implication of his argument. Understandably, he would be loath to draw much attention to it,
given his feelings toward Borda. In addition, Condorcet may have become disillusioned with his
approach because of its failure to provide a simple and definitive solution independently of the
competence level p.

For whatever reason, Condorcet abruptly changed course at this point in the Essai (1785,
lxüi-Ixv). He abandoned the statistical framework that he had so painstakingly built up and fell
back on a more "straightforward" line of reasoning. In doing so he opened up a whole new
approach that has had enormous influence on the modem theory of social choice. To illustrate
Condorcet’s newfound argument, consider the example in Table 4. If a candidate, such as c,
obtains a simple majority over every other candidate then, Condorcet argued, that candidate is
the only reasonable choice. Indeed, candidate a has no reasonable claim to being best, therefore
a should be set aside. So the contest is between b and c. But c defeats b, so the choice must
come down on the side of c.

More generally, Condorcet proposed that whenever a candidate obtains a simple majority
over every other candidate, then that candidate is presumptively the "best". This decision rule is
now known as "Condorcet’s criterion", and such a candidate (if it exists) is a "Condorcet
winner" or a "majority candidate" (Fishbum 1973).

In advancing this new approach, Condorcet was not abandoning his basic premise that the
object of voting is to make the "correct" choice. He merely shifted his ground and argued for
adopting a simple estimate of the best choice rather than a complex one. Furthermore, this "new"
approach is entirely consistent with Condorcet’s earlier solution of the ranking problem. Indeed,
if a majority candidate exists, then it must be ranked first in a Condorcet ranking. The reason is
simple. Suppose that x is a Condorcet candidate but that this candidate is not ranked on top in
the Condorcet ranking. Then it must be ranked just below some other candidate y. By
assumption, x defeats y by a simple majority. Therefore, if we switch only the order of x and
y in the ranking, then we obtain a new ranking that is supported by more pairwise votes. But
this contradicts the definition of the Condorcet ranking as the one supported by the maximum
number of pairwise votes. Thus Condorcet’s choice rule is consistent with his ranking rule
whenever a majority candidate exists.

While Condorcet’s solution is attractive, Borda’s rule still has advantages that cannot be
dismissed easily. First, it is considerably simpler to compute than Condorcet’s ranking rule.
Second, if one accepts Condorcet’s basic premises, then the Borda winner is in fact a better
estimate of the best candidate provided that p is close to 1/2. Third, if p is not close to 1/2, then
it is still very likely that the Borda winner is the best candidate, even though strictly speaking it
may not be the optimum estimate of the best candidatel5. If there are a large number of voters
and p is not very close to 1/2, then the probability is very high that the truly best candidate will
be selected by any reasonable choice rule (i.e., with high probability it will be the majority
winner and the Borda winner at the same time). The critical case is precisely when p is near 1/2,
and then Borda’s rule is definitely optimal. Thus, we must either jettison the whole idea of
selecting the "best" candidate with high probability, or admit that Borda’s rule is a good way of
estimating which candidate that is.

14 This idea was conjectured independently by Grofman (1981). The distinction between the majority alternative
and the alternative most likely to be best has also been discussed by Baker (1975) and Urken and Traflet (1984).
15 The following argument was suggested by Bernard Grofman.
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On the other hand, when the problem is to rank a set of alternatives, Condorcet’s rule is
undoubtedly better than Borda’s. Furthermore, even if one does not accept the specific
probability model on which this conclusion is based, Condorcet’s rule has an important stability
property that Borda’s rule lacks, as I shall now show.

LOCAL STABILITY AND NONMANIPULABILITY

One of the most important concepts in the theory of social choice is independence : a social
decision procedure should depend only on the voters’ preferences for the "relevant" alternatives,
not on their preferences for alternatives that are infeasible or outside the domain of discourse.
Independence has been given several distinct formulations (Arrow 1963 ; Nash 1950). The one
that I shall adopt here is closest in spirit to Nash’s version : if the set of alternatives shrinks, then
the reduced set of alternatives should be ranked in the same way that they were within the larger
ranking. There are at least two reasons why independence is desirable. First, it says that
decisions cannot be manipulated by introducing extraneous alternatives. Second, it allows
sensible decisions to be made without requiring an evaluation of all possible decisions. In
practice, society cannot consider all possible choices in a situation. It cannot, or at least usually
does not, even consider all of the best choices. In choosing a candidate for public office, for
example, it is impractical to consider all eligible citizens. In considering a piece of legislation, it
is impossible to hold votes on all possible amendments. Independence assures that a decision
made from a limited agenda of alternatives is valid relative to that agenda. Enlarging the agenda
may introduce better possibilities, but it should not cause us to revise the relative ranking of the
old possibilities.

Unfortunately, it is impossible to design any reasonable social decision rule with this
property. 1 claim, however, that independence can be satisfied if we restrict ourselves to agendas
that are sufficiently "connected". By a connected agenda 1 mean, roughly speaking, a subset of
closely related alternatives rather than an arbitrary collection of unrelated or extreme ones.
Consider the following example : A legislature of 100 members is considering three alternative
decisions a, b, and c (see Table 5). Other alternatives might in theory be considered, such as
d, e and f, but they are weaker that a, b and c in the sense that any one of them would be
defeated by any one of a, b or c.

Table 5. A Voting Matrix on Six Alternatives and 100 Voters.

The question is whether the exclusion of the nominally "inferior" alternatives d, e,f B
affects the choice between a, b and c. Put differently, can an inferior alternative be introduced
strategically in order to manipulate the choice between the "superior" alternatives ? This is surely
a situation that we would like to avoid. Unfortunately Borda’s rule suffers from this defect. To
see this, observe that the total Borda score of each alternative is simply the sum of the row
entries corresponding to that alternative (e.g., the right-hand column of Table 5). These scores
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imply the ranking cabdef. Now consider just the three alternatives a, b, and c. The
corresponding voting matrix is the one enclosed by dashed lines. The Borda scores for this
three-altemative situation are 117 for b, 105 for a and 78 for c. Hence, when just the top three
alternatives are considered, they would be ordered bac, which is the reverse of how the
electorate would have ordered them in the context of all alternatives. Introducing the inferior
alternatives changes the outcome from b to c.

I claim that Condorcet’s rule is immune to this type of instability. To compute the Condorcet
solution observe first that a has a simple majority over every other alternative, hence (as was
demonstrated in the previous section) Condorcet’s rule must rank a first. Since each of the
alternatives a, b and c defeats each of the alternatives d, e and f by a majority, it also
follows that the former three alternatives must be ranked above the latter three. For if this were
not the case, then some alternative would be ranked immediately below another alternative that it
defeats, which is impossible in a Condorcet ranking. To maximize agreement with the pairwise
voting data, a must be ranked first, b second, and c third. Positions four, five, and six in the
ranking will be occupied by d, e and f in some order. To determine which order, it suffices to
apply Condorcet’s criterion to these three alternatives alone ; that is, they should be ordered so
as to agree with the maximum number of pairwise votes that they receive among themselves.
The reader may verify that the ordering that accomplishes this objective is dfe. Hence the total
ordering implied by Condorcet’s rule is abcdfe. This is quite different from the Borda ordering.

1 have worked out the details of this example to show that Condorcet’s rule is not necessarily
difficult to compute even when a sizable number of alternatives is involved (though it is certainly
more difficult than Borda’s method). It also illustrates why Condorcet’s method satisfies a
certain form of independence. For example, if the bottom three alternatives are dropped from
consideration, then Condorcet’s rule (unlike Borda’s) must preserve the ordering abc. Indeed,
if it did not, then the interval abc could be rearranged into a new ordering that is supported by
more pairwise votes. But then abc could also be rearranged within the full ordering abcdfe to
obtain a new ordering that is supported by more pairwise votes. This contradicts the assumption
that abcdfe is supported by the maximum number of pairwise votes. A similar argument
applies if the last two alternatives are dropped, the last four, or indeed any bottom segment of
the ranking. Similarly, the ordering of the bottom part of the list will be preserved if we remove
the top alternative, the top two alternatives, or any top segment of the ranking.

In general, a Condorcet ranking has the property that the ordering of the alternatives does not
change whenever we restrict attention to an interval of the full orderingl6. This property will
be called local stability. Intervals tend to consist of alternatives that are relatively closely related.
For example, an interval might consist of a set of candidates that occupy a certain segment of the
political spectrum (e.g. "centrist"). Or it might consist of a series of minor modifications or
amendments to a proposed piece of legislation. 

’

1 shall show that Condorcet’s method is the only plausible ranking procedure that is locally
stable. To do so we must recall several properties that are standard in the social choice literature.
Let F be a social ranking rule, that is, a rule for strictly ordering any set of alternatives given
the preference data of the voters. We shall assume that the input data to F is given in the form of
a voting matrix : the number of votes for and against each pair of alternatives. All voters are
weighted equally because only the number of votes counts, not the identities of the individuals
who cast the votes. This property is known in the literature as anonymity. F is neutral if it is
not "biased" with respect to one or another alternative : if the names of the alternatives are
permuted, then their ranking is similarly permuted. Taken together, anonymity and neutrality

16 This property of Condorcet’s method (which is known in the literature as the "median procedure") was noted

by Jacquet-Lagrèze (1969). For other results on the median procedure see Michaud and Marcotorchino (1978),
Barthélemy and Monjardet (1981), Michaud (1985) and Barthélemy and McMorris (1986).
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require that F sometimes yields tiesl7. A third standard condition in the social choice literature
is that F be unanimous : if all voters cast their votes the same way on every pair, then the
ordering of the candidates agrees with all of the votes.

Finally we shall require a degree of consistency in the way that F aggregates individual
opinions into group opinions. Consider a bicameral system such as the U.S. Congress. To
pass, a decision must receive a majority of both chambers. This much is clear when a decision
involves just two choices. Now consider a decision involving more than two alternatives.
Suppose that both chambers use the same decision rule F, and that they consider the same
agenda. Let each chamber separately rank all of the alternatives. If both chambers happen to rank
them in exactly the same way, then we may say that this ranking is approved by both chambers.
If a ranking is approved by both chambers, then it stands to reason that is would also be

approved if the two chambers were to be considered as a single body (i.e., to cast their votes in
plenary session). F satisfies reinforcement if whenever a ranking is approved by two separate
groups of voters, then it would also be approved when the votes of the two groups are
pooledl8.

The condition of "local stability" can now be formally stated as follows : let A be an agenda
of alternatives, let V be a voting matrix on A, and let F(V) = R be the (unique) consensus
ranking. F is locally stable if for every interval B of the ranking R, F(VB) = RB where VB
and RB represent V and R restricted to the subset B. In case of ties, the condition says that
for every R E F(V), every interval B of R, and every RB E F(VB), if R’B E F(VB) for
some R’B ~ RB, then R’B can be substituted for RB in R to obtain a new ranking R’ E
F(V).

It follows from a theorem of myself and Arthur Levenglick (1978) that Condorcet’s rule is
the unique ranking rule that satisfies anonymity, neutrality, unanimity, reinforcemnt, and local
stabilityl9. Note that Borda’s rule satisfies all of these properties except local stability.

CONCLUSION

The purpose of this article has been to draw attention to a major, but little known, contribution
by Condorcet to the theory of group decision making. Condorcet proposed a decision rule that
applies to any voting situation whether cyclic majorities are present or not. This rule can be
interpreted as a best guess about the "true" ordering of the alternatives. The rule can also be
justified on entirely different grounds ; namely, it is unbiased with respect to both individuals

1 ~ For example, if there are an even number of voters and every pairwise vote is a tie, then anonymity and
neutrality imply that all linear orderings of the alternatives are equally valid. Thus F must sometimes take a
multiple values.
18 We require furthermore that if another ranking is approved by only one of the two groups, then it is not tied
with a ranking that is approved by both of them.
19 Let F satisfy the five conditions of the theorem. When there are exactly two alternatives, it follows that F
is simple majority rule (Young 1974). Now consider the case of more than two alternatives. Let R be the social
order. Local stability implies that whenever two alternatives are ranked one immediately above another in R,
then their ordering remains invariant when F is restricted to those two alternatives alone. Since F is simple
majority rule on every two alternatives, it follows that in the social order R every alternative must defeat (or tie)
the alternative ranked immediately below it. Furthermore, if the two alternatives are tied, then they may be
switched to obtain a social ordering tied with R. It can be shown by induction on the number of alternatives that
this property, together with neutrality, unanimity, and reinforcement, implies that F is Condorcet’s ranking rule
(Young and Levenglick 1978).
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and alternatives and it aggregates individual opinons in a "consistent" way. This axiomatic
justification differs significantly from the probabilistic one in that it places emphasis on the
operational properties of the method rather than on a model about how the world works. Of
course one may still question whether these are the "right" properties, just as one may question
whether Condorcet had the "right" probabilistic model. But at least the nature of the choice is
clarified. Furthermore, one must admit that the specific probabilistic model by which Condorcet
reached his conclusions is almost certainly not correct in its details. The plausibility of his
solution must therefore be subjected to other tests, as 1 have attempted to do.

I conclude that there is a strong case for Condorcet’s rule on two counts. First, in situations
where voters are primarily concerned with the accuracy of a decision (as in jury trials, expert
opinion pooling, and in some types of public referenda), Condorcet’s method gives the ranking
of the outcomes that is most likely to be correct. Second, where voters are motivated primarily
by their subjective preferences about outcomes, Condorcet’s rule is responsive to changes in
individual preferences, is unbiased with respect to voters and alternatives, and (unlike Borda’s
rule) it is relatively stable against manipulation by the introduction of unrealistic or inferior
alternatives. In short, we need not resolve the question whether voters attempt to judge which
decision is in the public interest or whether they merely register their subjective opinions on an
issue. Both of these elements are probably present in most decisions. In either case, Condorcet’s
method is a rational way of aggregating individual choices into a collective preference ordering.
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