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ON BINARY TREES AND DYCK PATHS

A. PANAYOTOPOULOS and A. SAPOUNAKIS1

RÉSUMÉ 2014 Sur les arbres binaires et les chemins de Dyck.
Une bijection entre les arbres binaires à n sommets et les chemins de Dyck de longeur 2n est obtenue. Deux
constructions permettent de passer d’un chemin de Dyck à un arbre binaire et d’ un arbre binaire à un chemin de

Dyck.

SUMMARY 2014A bijection between the set of binary trees with n vertices and the set of Dyck paths of
length 2n is obtained. Two constructions are given which enable to pass from a Dyck path to a binary tree and
from a binary tree to a Dyck path.

1. INTRODUCTION

It is well known that there exists a large number of important sets in Combinatorics with the
Catalan cardinality [1]. Two of these sets are examined in this paper; the set T~ of rooted
unlabelled binary trees with n vertices and the set of Dyck paths of length 2n.

For the study of the above notions we recall several definitions ([2], [3], [4]). For every
permutation with repetitions (p.r.) (p=(p(l)(p(2)...(p(~) we denote

where l(i) (resp. r(i)) is the first element on the left (resp. right) of the ith position which is
smaller than (p(i). If l{i) or/and r{i) does not exist we assume that l(i) or/and r(i) is equal
to zero.

For example if (p=32341243 then X=21230132.

In [3] it is proved that each binary tree T with n vertices is associated to a p.r.
which satisfies certain properties and determines T uniquely.

Indeed if the vertices of T are enumerated according to the inorder of T (i.e. by visiting the
left subtree first, then the root, and then the right subtree) the p.r. (p is defined as follows :

iff the ith vertex of T belongs to the kth level.

For example the corresponding p.r. of the tree T of Figure 1 is cp=32341243.
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Figure 1. The binary tree of (p=32341243

This p.r. satisfies the following two conditions :

(i) For every [n], with there exists t between i and j such that

for every

On the other hand every p.r. satisfying the above two conditions generates the associated
binary tree, so that the set of all binary trees T with n vertices may be identified with the set
of all p.r. which satisfy the properties (i) and (ii) (see Proposition 2.1 in
[3]).

A Dyck word is a word wE {a,a}* satisfying the following two conditions :

(ii) for every factorization w=uv, !utoc &#x3E; lulcx,

where Iwlcx., lulcx. (resp. I w I u loc), denote the number of occurences of the letter a, (resp.
oc) in the words w,u.

A Dyck path (sO,sl,...,s2n) of length 2n, is a minimal path of NxN, lying above the
diagonal and joining the points (0,0), (n,n).

It is well known that the Dyck paths of length 2n are coded by the Dyck words w=zlz2...z2n
such that every vertical (resp. horizontal) edge (s¡-l’s¡) corresponds to the letter z¡=a (resp.
z¡=a).

Thus in the sequel the two notions of Dyck paths and Dyck words are identified.

For example the word w=aa a a a a a a a a a a a a a a is identified with the minimal path
of NxN described in Figure 2.
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Figure 2. The Dyck word w=a a a a a a a a a a a a a a a a

In section 2 we use the associated p.r. (p of a binary tree T for the generation of a Dyck path,
which may be obtained from T by a simple practical method.

The converse problem is examined in section 3. Here using well known properties of Dyck
words we construct a p.r. cp which satisfies the two conditions which are necessary for the

generation of binary trees. Thus, given a Dyck path we generate a binary tree which may be
obtained by a simple practical method.

In section 4 we show that each one of the constructions of the previous two sections is the
inverse of the other, so that we obtain a new bijection between the sets T~ and D2,,.

2. GENERATION OF DYCK PATHS

For the generation of a Dyck path by a binary tree T we use the associated p.r.
(p=(p(l)(p(2)...(p(/~). We first give a useful property of (p.

LEMMA 2.1. If ie [n-11, there exists ç e [i] such that cp(~)=cp(i+1)+1 and

(p(~)(p(t), for every t with 

Proof. Let, whenever Clearly since iE H, we
have that H#0.

Let E H such that { cp(p) : pE H}. It’  ( )=l ( ), it follows that there exists je [n]
such that j~, c~U)=a (~ )=cp(~ )-1 and for each t with jt~.

Then since çe H we have that for every jti+l. Further, since
and we obtain that 
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This proves that jE H, though cpU)cp(ç) which contradicts the minimality property of (p(~).
Thus ~)=r(~).

Finally, since for each t with çti+1, we deduce and

cp(~)= À(ç)+1=cp(i+1)+I. I

In the sequel it is assumed that 

PROPOSITION 2.2. The word with

and

is a Dyck word.

PROOF. Given pE [2n] we consider the following sets :

It is clear that these four sets form a partition of [p].

We will define two functions and

Indeed, given an element 2iE Fp we have that and by Lemma 2.1 there exists
unique ç E [i] such that cp(~ )=cp(i+ 1 )+ 1 and for every t with ~ ti+ 1.

We define the first function by h~(2~)=2~-L Clearly, since l(~)r(~) we deduce that

2ç -1 E Ep’ so that the function h, takes its values in Ep.

Now given an element 2i- l E Ep we have that r(i)l(i), so that there exists unique jE [n] such
that ji, (p(/)=/(0 and for every t with jti.

We define the second function by h2(2i-1 )=2 j. Clearly, since we deduce that

2jE Fp so that the function h2 takes its values in Fp.

It is easy to check that both these functions are one to one, so that we obtain IFpI_IE I and

I for each pE [2n].

Further it is easy to see that these two functions are also onto, in the case when p=2n, so that
we obtain IF2nl=IE2nl and IE2nl=IF2nl.

From the above relations we deduce that

This shows that w=zlz2...z2n is a Dyck word. I
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Thus, given a binary tree T with n vertices, a Dyck word of length 2n is constructed,
which is denoted by wT.

For example, if T is the binary tree of Figure 1 then WT is the Dyck word of Figure 2.

REMARK 2.3. A practical method for the determination of the Dyck word wT is the

following :

- We first construct the extended binary tree of T and then we label its root by oc and each
vertex which is a left (resp. right) child by oc (resp. a).

- The Dyck word wT is obtained by the inorder traversal of the labelled extended binary tree,
starting from the second vertex (see Figure 3).

Figure 3. The extended tree of T.

3. GENERATION OF BINARY TREES

For the generation of a binary tree by a Dyck word we consider the following
sets : 1= I iE [2n] : zi=oc } and J=lje [2n] : zj=oc) .
We first summarize the main well known properties of Dyck words, the proof of which is
omitted.

LEMMA 3.1. Let i E I ,je J, such that i j. Then the following conditions are equivalent :
(a) The element i is the greatest in f-1]n I such that 

for every kE [ij].
(b) The element i is the greatest in such that the subword is a Dyck
word.

(c) The element i is the greatest in U-1]f11 such that
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(a’) The element j is the least in [i+1, 2n]nJ such that for each

(b’) The element j is the least in [i+1, 2n]nJ such that the subword
word .

is a Dyck

(c’) The element j is the least in such that

We define a map f : J -~ I such that for jeu J, f(i) is the unique element of U- I ]nI satisfying
either of the equivalent conditions (a’), (b’) and (c’) of Lemma 3.1.

Similarly we define a map g : I - J such that for ie I, g(i) is the unique element of [i+1,2n]
satisfying either of the equivalent conditions (a), (b) and (c) of Lemma 3.1.

Clearly, by Lemma 3.1. follows that for ie I and jE J we have f(j)=i iff g(i)=j, which
shows that these two maps are bijections and the one is the inverse of the other.

We recall that a set S of disjoint pairs in [2n] is nested if it satisfies the following condition :
For any ( a,b ) , ( c,d ) e S we never have acbd.

LEMMA 3.2. The set S of the pairs { j, ff ) }, je J , is nested.

PROOF. Assume that there exist j, me J such that ikjm, where i=f(j) and k=f(m).

Clearly since the subword is a Dyck word we deduce that,

On the other hand since the subword ZkZk+l---Z. is also Dyck we deduce that,

Thus, from the above two inequalities follows that,

which contradicts the maximality property of i in the definition of i = f(j). I

REMARK 3.3. A practical method for evaluating the function f and the nested set S from
the Dyck path is the following :

To each edge (si-1, si), of the Dyck path we assign the number iE [2n] and we define the

number T(s~)} where is the level of in the Dyck
path.

In this way we obtain a partition of [2n] into classes Cr, such that :

If we order the elements of each class, we get the nested set S by choosing pairs of
consecutive elements of Cr .
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Figure 4. The generation of the nested set.

For example for the Dyck path of Figure 4 we have :

We now come to the main construction of the binary tree. Firstly, we will construct by
induction two sequences (Ak), (BJ of subsets of [2nl ] as follows :

These two sequences satisfy the following properties:

If then

) Each element of Bk is an even number, while each element of Ak is an odd number.
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The proof of the first three properties is evident, while the fourth is easily proved using the
following useful property :

A number jE J (resp ie I) is even iff the number fy) (resp. g(i)) is odd.

From the above properties follows that there exists me [2n] such that and for

every kSm, while Bk=Ak=0 for k&#x3E;m.

Further we have the following Proposition.

PROPOSITION 3.4. The family of the sets Bk and Ak, kE [m] is a partition of [2n].

PROOF. We first show that each even number of [2n] is contained in some B~.

Indeed, if this is not true we consider the non-empty set

and let M=max

We consider the following two cases :

1) Let M=2v, where 2vE EnJ. Clearly vn, since 2ne E.

We consider two subcases :

la) If 2v+lE I then 2J!=g(2v+l)EJ and 2~&#x3E;M ; thus by the maximality property of M we
deduce that 2jio E. It follows that there exists kE [m] such that 2jic- Bk

Further we have that and which is a contradiction.

1 b) If 2v+leJ, let 2tE I such that g(2t)=2v+1. Since 2v+ 1 &#x3E;M , by the maximality
property of M, follows that 2tG E. Then there exists ke [m], such that 2tE Bk .

Further we have that 2v+ I =g(2t)E Ak and which is a contradiction.

2) Let M=g(2~), where 2ç e E(1I.

We consider two subcases :

2a) If 2ç -Ie I, then 2-r=9(2~ - I)r= J and using Lemma 3.2. we have 2T&#x3E;M.

It follows by the maximality property of M that and there exists ke [m], such that

2TE Bk . Further we have that 2ç -1 =f(2t)e Ak and which is a contradiction.
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2b) If 2) - l e J, we first observe that since

there exists a greatest number pe [2) - 1 ]mI such that,

Clearly by the maximality property of 3 follows that fi + le I and 
Moreover, from the last equality follows that the number is even ; let 6e [~ -1 ] such that
(3=26-1. From the maximality property of 2~-1 follows easily that g(2ô-l»2ç and, using
Lemma 3.2, g(26 - 1) &#x3E; M. Then by the maximality property of M we obtain that g(2ô-1)~E
and hence there exists kE [m] such that g(2S -1 )E B~.

This shows that 28- I E A,~ for some kE [m] and

We choose the greatest number Y with 2ô::;2Y2ç-l, which satisfies the following two
conditions :

(ii) 2YE BknI for some kE [m] .

We will show that g(2Y)=2~-l. Clearly, from the first of the above conditions follows that

g(2Y)~2ç -I. If g(2Y)=2E- 12) - 1 , then from the maximality property of 26-1 follows that

2eE I.

Moreover if kE [M] with 2YE B we obtain that and

Finally, since it follows that the number 2e satisfies both

conditions (i) and (ii) which contradicts the maximality property of 2Y.

Thus g(2Y)=2~ -1, and since for some we obtain that and

which is a contradiction. This shows that for each pE [n] .

It remains to show that, Ak for each pE [n]. Indeed, if pE [n], without loss of

generality we may assume that 2p-1 E I.
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Then the number g(2p- 1 ) is even and

This shows that

LEMMA 3.5. Let with If either i E Ak or je Ak then there is no integer t

which lies between i, j and belongs to some Ax with 

PROOF. If the result is not true, we consider X to be the least integer in [k] such that there

exists some integer t which lies between i, j and tE Ax. Without loss of generality we may
assume that tE I.

Clearly, by Lemma 3.2, the element g(t) lies between i and j. Moreover, since g(t)E BX
then either g(t)- le or g(t)+IE AX-1. In both cases we obtain an element of AX-1 which
lies between i and j.

This contradicts the minimality property of X. I

PROPOSITION 3.6. The p. r. 9 with (p(i)=k iff 2i-1 E Ak , generates a binary tree.

PROOF. It is enough to show that cp satisfies the following two conditions :

(i) For every [n] with there exists t between i and such that 

(ii) ~1 (i)=cp(i)-1, for every iE [n].

We assume that the first condition is not true and let k be the least integer for which there exist
[n] such that and for every t between i and j. Without loss of

generality we assume that ij.

We consider the case when and 2j- le I. (The other three possible cases are proved
similarly).

Let 2p =f(2i- 1) and 2Y=g(2j-1). Clearly, since we obtain that 2i- 1, 2j-lE Ak
and 2Ye B k. It follows that either 2p - I or Ak-1, and either 2Y-1 or

2Y+ 1 E But, by Lemma 3.5 we have that 2~+1, 2Y- 1,z which gives that 2~-1,
2Y+IEAk-l- It follows that p(~)=p(Y + 1)=k-I.

If either 2~3 2t-1 2i-1 or 2j-1 2t-1 2Y by Lemma 3.5. follows that 2t-l e AÀ’ for some
so that 

On the other hand, if 2i-1 2t-1 _2 j-1 then by the hypothesis for k follows that cp(t)?k. Thus
for every t which lies between (3 and Y+1.
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This contradicts the minimality property of k and the proof of the first property is complete.

We now come to the proof of the second property.

We first observe that this is obviously true when so that we may assume that 

Moreover, without loss of generality, we may assume that 2i- l G I.

If we set 2(3=g(2i-1 ) and then we have that and It follows that

either or But, by Lemma 3.5 so that 2 fi + 1 e A_ i , and
g(p + 1) = k- I = 

On the other hand, from Lemma 3.5 follows that for every itb, so that

Thus we have 

Finally since the converse inequality is always true we obtain the desired property of tp. I

Given a Dyck word of length 2n we have constructed a p.r. c~=cp( 1 )tp(2)...cp(n) which

according to proposition 3.6 generates a binary tree with n vertices, which will be denoted by
TW.

Forexampleifw=aaaaaaa aaaaaaaaa

then we have:

and p(5)=1, p(2)=p(6)=2, (p(l)=(p(3)=(p(8)=3, cp(4)=cp(~)=4.

Thus (p=32341243 so that the binary tree T, is the one of Figure 1.

REMARK 3.7. A practical method for the evaluation of the p.r. cp by the nested set S of the
Dyck path is the following.

We first assign the number 0 to the last edge and the number 1 to the kth edge for which

Then we assign the number 0 to the (k-I)th and (k+ I )th edges and the number 2 to the

p th edges for which S and S.

Continuing in this way and deleting the zeros we obtain the desired p.r. (see Figure 5).
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Figure 5. The generation of 9=32341243

4. THE RELATION BETWEEN THE TWO CONSTRUCTIONS

In this section we examine the relation between the two constructions of the previous sections
and show that each one of them is the inverse of the other.

PROPOSITION 4.1. The map T -wT is a bijection between the set of binary trees with n
vertices and the set of Dyck words of length 2n.

PROOF. Since the sets £ and D 2n have the same cardinality it is enough to show that the
given map is onto.

For this, let w=zlz2.....z2n be a Dyck word and T= Tw the binary tree induced by w
according to the construction of section 3.

In order to show that w=wT, we have to prove that :

and

for each iE [n], where by (p we denote the p.r. associated to T.

For the proof of the first formula we observe that if then 2i-1eA1 and 

Let 9(i)=k&#x3E;l and l(i)r(i), we will show that 

Indeed, if we set 2p==f(2f-l). Clearly since (p(i)=k we have that 2i-le Ak and
It follows that either or 
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Moreover by Lemma 3.5, 2p+le Ak so that 2P-IE A~ and 

Further, by Lemma 3.5 we can easily obtain that for each t with bti. This

shows that, (i).

Thus l(i)&#x3E;r(i), which is a contradiction.

In the same way it is shown that if then z2i-1 =Cl, so that the proof of the first
formula is complete.

We now come to the proof of the second formula.

Let iE [n-1], such that and kE [m] with 2iE Bk. Clearly, since 2iE Bk we
obtain that either i or 

If there exists Y_i such that 2Y-1=f(2i).

If 2i-1 E AÀ’ since 2Y-I:!~2i-12i, by Lemma 3.5 we obtain that À~k, so that 

Then we have that c~(i+ 1 )=k-1 ~1=cp(i ) which is a contradiction.

Thus 

In the same way, it is shown that if then so that the proof of the
proposition is complete. I
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