Résonances en limite semi-classique
Mémoires de la Société Mathématique de France, no. 24-25 (1986) , 232 p.
@book{MSMF_1986_2_24-25__1_0,
     author = {Helffer, B. and Sj\"ostrand, J.},
     title = {R\'esonances en limite semi-classique},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {24-25},
     year = {1986},
     doi = {10.24033/msmf.327},
     zbl = {0631.35075},
     language = {fr},
     url = {https://www.numdam.org/item/MSMF_1986_2_24-25__1_0/}
}
TY  - BOOK
AU  - Helffer, B.
AU  - Sjöstrand, J.
TI  - Résonances en limite semi-classique
T3  - Mémoires de la Société Mathématique de France
PY  - 1986
IS  - 24-25
PB  - Société mathématique de France
UR  - https://www.numdam.org/item/MSMF_1986_2_24-25__1_0/
DO  - 10.24033/msmf.327
LA  - fr
ID  - MSMF_1986_2_24-25__1_0
ER  - 
%0 Book
%A Helffer, B.
%A Sjöstrand, J.
%T Résonances en limite semi-classique
%S Mémoires de la Société Mathématique de France
%D 1986
%N 24-25
%I Société mathématique de France
%U https://www.numdam.org/item/MSMF_1986_2_24-25__1_0/
%R 10.24033/msmf.327
%G fr
%F MSMF_1986_2_24-25__1_0
Helffer, B.; Sjöstrand, J. Résonances en limite semi-classique. Mémoires de la Société Mathématique de France, Série 2, no. 24-25 (1986), 232 p. doi : 10.24033/msmf.327. http://numdam.org/item/MSMF_1986_2_24-25__1_0/

[A.He.Si.] J.E. Avron, I. Herbst, B. Simon : Schrödinger operators with magnetic fields III, Atoms in homogeneous magnetic field, Comm. Math. Phys. 79, p. 529-572, (1981). | Zbl | MR

[A. 1] J.E. Avron : Bender-Wu formulas and classical trajectories : higher dimensions and degeneracies, Int. J. of Quantum Chemistry 21 (1982), 119-124.

[A.2] J.E. Avron : Bender-Wu formulas for the Zeeman effect in hydrogen, Ann. of Physics 131, (1981), 73-94. | MR

[Ag.C.] J. Aguilar, J.M. Combes : A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971), 269-279. | Zbl | MR

[B.C.] E. Balslev, J.M. Combes : Spectral properties of many-body Schrödinger operators with dilation analytic interactions, Comm. Math. Phys. 22 (1971), 280-294. | Zbl | MR

[Be.F.] R. Beals, C. Fefferman : Spatially inhomogeneous pseudo-differential operators, Comm. P.A. Math., 27 (1974), 1-24. | Zbl | MR

[Be.] R. Beals : A general calculus of pseudo-differential operators, Duke Math. J., 42, n° 1 (1975), 1-42. | Zbl | MR

[Ben.W.1] C. Bender, T. Wu : Anharmonic oscillator, Phys. Rev., 184 (1969), 1231-1260. | MR

[Ben.W.2] C. Bender, T. Wu : Phys. Rev. D7, (1973), 1620.

[Ba.Ben.W.] T. Banks, C. Bender, T. Wu : Coupled anharmonic oscillators I. Equal mass case, Phys. Rev. D., Vol.8, n° 10, (Nov. 1973), 3346-3366. | MR

[Ba.Ben.] T. Banks, C. Bender : Coupled anharmonic oscillators II: Unequal mass case, Phys. Rev. D., Vol. 8, n° 10 (Nov. 1973), 3366-3378. | MR

[Bo.S.] L. Boutet De Monvel, J. Sjöstrand : Sur la singularité des noyaux de Bergman et de Szegö, Astérisque 34-35, (1976), 123-164. | Zbl | Numdam

[Bo.G.] L. Boutet De Monvel, V. Guillemin : The spectral theory of Toeplitz operators, Ann. of Math. Studies, n° 99, (1981), Princeton University Press. | Zbl | MR

[Co.] E. Coleman : The use of instantons, Conference d'Erice.

[C.D.Se.] J.M. Combes, J. Duclos, R. Seiler : On the shape resonance, à paraître.

[Cy.] H. Cycon : Resonances defined by modified dilations, à paraître.

[De.] N. Dencker : The Weyl calculus with locally temperate metrics and weights, Préprint.

[Gra.Gre.Ha.Sil.] S. Graffi, V. Grecchi, E.M. Harrell, Silverstone : The 1/R expansion for H+2 : Analyticity, Summability and Asymptotics, Préprint.

[Gra.] S. Graffi : Séminaire d'Analyse de Bologne (1982-1983).

[Ha.Si] E. Harrell, B. Simon : The mathematical theory of resonances whose widths are exponentially small, Duke Math. J., Vol. 47, n° 4, Déc. 1980. | Zbl | MR

[H.R.] B. Helffer, D. Robert : Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal., 53, n° 3, (1983), 246-268. | Zbl | MR

[H.S.1] B. Helffer, J. Sjöstrand : Multiple wells in the semi-classical limit I, Comm. in PDE, 9(4) (1984), 337-408. | Zbl

[H.S.2] B. Helffer, J. Sjöstrand : Puits multiples en limite semi-classique II, Interaction moléculaire, symétries, perturbation, Ann. de l'I.H.P., Vol. 42, n° 2, 1985, p. 127-212. | Zbl | MR | Numdam

[H.S.3] B. Helffer, J. Sjöstrand: Multiple wells in the semi-classical limit III, non resonant wells, Math. Nachr., (1985). | Zbl

[H.S.4] B. Helffer, J. Sjöstrand: Puits multiples en mécanique semi-classique IV, étude du complexe de Witten, Comm. P.D.E., 10(3), (1985), 245-340. | Zbl

[H.S.5] B. Helffer, J. Sjöstrand: Puits multiples en mécanique semi-classique V, étude des mini puits, A paraître. | Zbl

[He.] I. Herbst : Dilation analyticity in a constant electric field, Comm. Math. Phys., 64 (1979), 279-298. | Zbl | MR

[Hö.1] L. Hörmander: Fourier integral operators I., Acta Math. 127 (1971), 79-183. | Zbl | MR

[Hö.2] L. Hörmander: The Weyl calculus of pseudo-differential operators, Comm. P.A.M., 32 (1979), 359-443. | Zbl

[Ma] A. Martinez: Estimations de l'effet tunnel pour le double puits, Publications Mathématiques d'Orsay, 85 T 17.

[M.S.] A. Melin, J. Sjöstrand: Fourier integral operators with complex valued phase functions, Springer L.N. in Math., n° 459, 120-223. | Zbl | MR

[Re.Si] M. Reed, B. Simon: Methods of modern mathematical physics, Vol. IV, Academic Press, New-York, 1978. | Zbl

[Si.1] B. Simon : Resonances and complex scaling, a rigorous overview, Int. J. Quantum Chemistry, 14 (1978), 529-542.

[Si.2] B. Simon : Semi-classical analysis of low lying eigenvalues I, Ann. I.H.P., 38, n° 3, (1983), 295-307. | Zbl | MR | Numdam

[Si.3] B. Simon : Large orders of summability of eigenvalue perturbation theory: a mathematical overview, Int. J. Quantum Chemistry, 21 (1982), 3-25.

[Si.4] B. Simon : Coupling constant analyticity for the anharmonic oscillator, Ann. of Physics, 58 (1970), 76-136. | MR

[S.1] J. Sjöstrand : Singularités analytiques microlocales, Astérisque n° 95 (1982). | Zbl | MR | Numdam

[S.2] J. Sjöstrand : Tunnel effects for semi-classical Schrödinger operators, Contribution to the workshop and symposium on hyperbolic equations and related topics, Katuda and Kyoto, August 27 - Sept. 5, 1984, à paraître. | Zbl

[Ti.] Titschmarch : Eigenfunction expansions II, Oxford at the Clarendon Press, 1958. | Zbl

[V.1] B.R. Vainberg: On the analytic properties of the resolvent for a certain class of operator-pencils, Mat. Sb., 77(119), (1968), n° 2, Math. USSR, Sb., 6 (1968), N° 2.

[V.2] B.R. Vainberg : On exterior elliptic problems ..., Mat. Sb., 92(134), (1973), n° 2, Math. USSR. Sb., 21 (1973), n° 2. | Zbl

  • Hitrik, Michael; Zworski, Maciej Classically forbidden regions in the chiral model of twisted bilayer graphene, Probability and Mathematical Physics, Volume 6 (2025) no. 2, p. 505 | DOI:10.2140/pmp.2025.6.505
  • Jaramillo, José Luis; Macedo, Rodrigo Panosso; Meneses-Rojas, Oscar; Raffaelli, Bernard; Al Sheikh, Lamis A Weyl law for black holes, Physical Review D, Volume 110 (2024) no. 10 | DOI:10.1103/physrevd.110.104008
  • Basak, Anirban; Vogel, Martin; Zeitouni, Ofer Localization of eigenvectors of nonhermitian banded noisy Toeplitz matrices, Probability and Mathematical Physics, Volume 4 (2023) no. 3, p. 477 | DOI:10.2140/pmp.2023.4.477
  • Ben-Artzi, Jonathan; Marletta, Marco; Rösler, Frank Computing the Sound of the Sea in a Seashell, Foundations of Computational Mathematics, Volume 22 (2022) no. 3, p. 697 | DOI:10.1007/s10208-021-09509-9
  • Bony, Jean-François; Michel, Laurent; Ramond, Thierry Applications of Resonance Theory Without Analyticity Assumption, Annales Henri Poincaré, Volume 22 (2021) no. 11, p. 3641 | DOI:10.1007/s00023-021-01065-w
  • Balac, Stéphane; Dauge, Monique; Moitier, Zoïs Asymptotics for 2D whispering gallery modes in optical micro-disks with radially varying index, IMA Journal of Applied Mathematics, Volume 86 (2021) no. 6, p. 1212 | DOI:10.1093/imamat/hxab033
  • Belolipetskaya, Anna G.; Boitsev, Anton A.; Fassari, Silvestro; Popov, Igor Y. 3D Helmholtz resonator with two close point-like windows: Regularisation for Dirichlet case, International Journal of Geometric Methods in Modern Physics, Volume 18 (2021) no. 10, p. 2150153 | DOI:10.1142/s021988782150153x
  • Jaramillo, José Luis; Macedo, Rodrigo Panosso; Sheikh, Lamis Al Pseudospectrum and Black Hole Quasinormal Mode Instability, Physical Review X, Volume 11 (2021) no. 3 | DOI:10.1103/physrevx.11.031003
  • Deleporte, Alix Toeplitz Operators with Analytic Symbols, The Journal of Geometric Analysis, Volume 31 (2021) no. 4, p. 3915 | DOI:10.1007/s12220-020-00419-w
  • Sjöstrand, Johannes Review of Classical Non-self-adjoint Spectral Theory, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 157 | DOI:10.1007/978-3-030-10819-9_8
  • Sjöstrand, Johannes Resolvent Estimates Near the Boundary of the Range of the Symbol, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 191 | DOI:10.1007/978-3-030-10819-9_10
  • Galkowski, Jeffrey; Toth, John A. Pointwise Bounds for Steklov Eigenfunctions, The Journal of Geometric Analysis, Volume 29 (2019) no. 1, p. 142 | DOI:10.1007/s12220-018-9984-7
  • Klein, Markus; Rosenberger, Elke Tunneling for a Class of Difference Operators: Complete Asymptotics, Annales Henri Poincaré, Volume 19 (2018) no. 11, p. 3511 | DOI:10.1007/s00023-018-0732-0
  • Duyckaerts, Thomas; Grigis, Alain; Martinez, André Resonance widths for general Helmholtz resonators with straight neck, Duke Mathematical Journal, Volume 165 (2016) no. 14 | DOI:10.1215/00127094-3644795
  • Sacchetti, Andrea Perturbation Theory, Semiclassical, Mathematics of Complexity and Dynamical Systems (2012), p. 1376 | DOI:10.1007/978-1-4614-1806-1_86
  • Iantchenko, Alexei An Inverse Problem for Trapping Point Resonances, Letters in Mathematical Physics, Volume 86 (2008) no. 2-3, p. 151 | DOI:10.1007/s11005-008-0276-1
  • Hager, Mildred Bound on the number of eigenvalues near the boundary of the pseudospectrum, Proceedings of the American Mathematical Society, Volume 135 (2007) no. 12, p. 3867 | DOI:10.1090/s0002-9939-07-08914-9
  • Bouclet, Jean-Marc Spectral distributions for long range perturbations, Journal of Functional Analysis, Volume 212 (2004) no. 2, p. 431 | DOI:10.1016/j.jfa.2003.07.005
  • Toth, John A. Eigenfunction decay estimates in the quantum integrable case, Duke Mathematical Journal, Volume 93 (1998) no. 2 | DOI:10.1215/s0012-7094-98-09309-7

Cité par 19 documents. Sources : Crossref