Le « closing lemma » en topologie C 1
Mémoires de la Société Mathématique de France, no. 74 (1998) , 132 p.
@book{MSMF_1998_2_74__1_0,
     author = {Arnaud, Marie-Claude},
     title = {Le {\guillemotleft} closing lemma {\guillemotright} en topologie $C^1$},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {74},
     year = {1998},
     doi = {10.24033/msmf.387},
     mrnumber = {99h:58097},
     zbl = {0920.58039},
     language = {fr},
     url = {http://archive.numdam.org/item/MSMF_1998_2_74__1_0/}
}
TY  - BOOK
AU  - Arnaud, Marie-Claude
TI  - Le « closing lemma » en topologie $C^1$
T3  - Mémoires de la Société Mathématique de France
PY  - 1998
IS  - 74
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/MSMF_1998_2_74__1_0/
DO  - 10.24033/msmf.387
LA  - fr
ID  - MSMF_1998_2_74__1_0
ER  - 
%0 Book
%A Arnaud, Marie-Claude
%T Le « closing lemma » en topologie $C^1$
%S Mémoires de la Société Mathématique de France
%D 1998
%N 74
%I Société mathématique de France
%U http://archive.numdam.org/item/MSMF_1998_2_74__1_0/
%R 10.24033/msmf.387
%G fr
%F MSMF_1998_2_74__1_0
Arnaud, Marie-Claude. Le « closing lemma » en topologie $C^1$. Mémoires de la Société Mathématique de France, Série 2, no. 74 (1998), 132 p. doi : 10.24033/msmf.387. http://numdam.org/item/MSMF_1998_2_74__1_0/

[1] R. Abraham et J. Marsden - Foundations of mechanics, Benjamin N.Y., 1967. | Zbl

[2] V. Arnold - Méthodes mathématiques de la mécanique classique, MIR, 1976. | Zbl | MR

[3] V. Arnold et A. Avez - Problèmes ergodiques de la mécanique classique, Gauthier-Villars, 1967. | Zbl | MR

[4] C. Gutierrez - "A counter-exemple to a C2 closing lemma", Erg. Th. and Dyn. Syst. 7 (1987), p. 509-530. | Zbl | MR

[5] M. Herman - "Exemple de flots hamiltoniens dont aucune perturbation en topologie C∞ n'a d'orbites périodiques sur un ouvert de surfaces d'énergie", C.R.A.S. (1991), no. 313, p. 49-51. | Zbl | MR

[6] Mai Jiehua - "A simpler proof of C1 closing lemma", Scientia Sinica 10 (1986), no. XXIV, p. 1020-1031. | Zbl

[7], "A simpler proof of the extended C1 closing lemma", Chinese Science Bull. 34-3 (1989), p. 180-184.

[8] R. Mañé - "An ergodic closing lemma", Annals of Mathematics 116 (1982), p. 503-540. | Zbl | MR

[9] J. Moser - "On the volume element on a manifold", Trans. Amer. Math. Soc. 120 (1965), p. 286-294. | Zbl | MR

[10], "Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff", Springer Lect. Notes in Math. 597 (1977), p. 464-494. | Zbl | MR

[11] J. Palis et W. De Melo - Geometric theory of dynamical systems, Springer-Verlag, 1982. | Zbl | MR

[12] J. Palis et C. Pugh - "Fifty problems in dynamical systems", L.N. in Math. 468 (1974), p. 345-353. | Zbl | MR

[13] C. Pugh - "The closing lemma", Amer. J. Math. 89 (1967), p. 956-1009. | Zbl | MR

[14], "An improved closing lemma and a general density theorem", Amer. J. Math. 89 (1967), p. 1010-1021. | Zbl | MR

[15] C. Pugh et C. Robinson - "The C1 closing lemma, including hamiltonians", Erg. Th. & Dyn. Syst. 3 (1983), p. 261-314. | Zbl | MR

[16] C. Robinson - "Introduction to the closing lemma", Springer Lect. Notes in Math. 668 (1978), p. 223-230. | Zbl | MR

[17] M. Shub - "Stabilité globale des systèmes dynamiques", Asterisque 56 (1978). | Zbl | MR | Numdam

[18] L. Wen - "On the C1-stability conjecture of flows", J. Diff. Equations 129 (1996), p. 334-357. | Zbl | MR

Cité par Sources :