Groupes de Chow-Witt
Mémoires de la Société Mathématique de France, no. 113 (2008) , 205 p.

Dans ce travail, nous étudions les groupes de Chow-Witt. Ces groupes ont été introduits par J. Barge et F. Morel dans le but de comprendre dans quelle situation un A-module projectif P de rang égal à la dimension de A est isomorphe à un module projectif plus simple QA. Dans un premier temps, nous montrons que ces groupes satisfont à peu de choses près les propriétés fonctorielles des groupes de Chow classiques. Nous définissons ensuite pour tout 𝒪 X -module localement libre E de rang (constant) n sur un schéma régulier X de dimension mn une classe d’Euler c ˜ n (E) qui est un raffinement de la classe de Chern maximale classique c n (E). Cette classe d’Euler satisfait elle aussi de bonnes propriétés fonctorielles. Nous obtenons en particulier que si P est un projectif de rang n sur un anneau régulier A de dimension supérieure ou égale à n tel que PQA alors c ˜ n (P)=0. Nous calculons dans un second temps les groupes de Chow-Witt maximaux d’un anneau régulier de dimension 2 et d’une -algèbre A régulière de dimension quelconque. Il découle immédiatement de ces calculs que si P est un A-module projectif de rang n égal à la dimension de l’anneau on a c ˜ n (P)=0 si et seulement si PQA. Finalement nous examinons les liens entre les groupes de Chow-Witt et les groupes des classes d’Euler introduits par S. Bhatwadekar et R. Sridharan.

In this work we study the Chow-Witt groups. These groups were defined by J. Barge et F. Morel in order to understand when a projective module P of top rank over a ring A has a free factor of rank one, i.e., is isomorphic to QA. We show first that these groups satisfy the same functorial properties as the classical Chow groups. Then we define for each locally free 𝒪 X -module E of (constant) rank n over a regular scheme X an Euler class c ˜ n (E) which is a refinement of the usual top Chern class c n (E). The Euler classes satisfy also good fonctorial properties. In particular, we get c ˜ n (P)=0 if P is a projective module of rank n over a regular ring A of dimension n such that PQA. Next we compute the top Chow-Witt group of a regular ring A of dimension 2 and the top Chow-Witt group of a regular -algebra A of finite dimension. For such A, we get that if P is a projective module of rank equal to the dimension of the ring then c ˜ n (P)=0 if and only if PQA. Finally, we examine the links between the Chow-Witt groups and the Euler class groups defined by S. Bhatwadekar and R. Sridharan.

DOI : 10.24033/msmf.425
Classification : 13C10, 13D15, 14C15, 14C17, 18F30
Mot clés : groupes de Chow-Witt, classe d’Euler, fibrés vectoriels
Keywords: Chow-Witt groups, Euler class, vector bundles
@book{MSMF_2008_2_113__1_0,
     author = {Fasel, Jean},
     title = {Groupes de {Chow-Witt}},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {113},
     year = {2008},
     doi = {10.24033/msmf.425},
     mrnumber = {2542148},
     zbl = {1190.14001},
     language = {fr},
     url = {http://archive.numdam.org/item/MSMF_2008_2_113__1_0/}
}
TY  - BOOK
AU  - Fasel, Jean
TI  - Groupes de Chow-Witt
T3  - Mémoires de la Société Mathématique de France
PY  - 2008
IS  - 113
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/MSMF_2008_2_113__1_0/
DO  - 10.24033/msmf.425
LA  - fr
ID  - MSMF_2008_2_113__1_0
ER  - 
%0 Book
%A Fasel, Jean
%T Groupes de Chow-Witt
%S Mémoires de la Société Mathématique de France
%D 2008
%N 113
%I Société mathématique de France
%U http://archive.numdam.org/item/MSMF_2008_2_113__1_0/
%R 10.24033/msmf.425
%G fr
%F MSMF_2008_2_113__1_0
Fasel, Jean. Groupes de Chow-Witt. Mémoires de la Société Mathématique de France, Série 2, no. 113 (2008), 205 p. doi : 10.24033/msmf.425. http://numdam.org/item/MSMF_2008_2_113__1_0/

[Ba1] P. Balmer, Derived Witt groups of a scheme, Journal of pure and applied alg. 141, no. 2 (1999), 101-129. | MR | Zbl

[Ba2] P. Balmer, Triangular Witt Groups. Part I : the 12-term exact sequence, K-theory 19 (2000), 311-363. | MR | Zbl

[Ba3] P. Balmer, Triangular Witt Groups. Part II : from usual to derived, Math. Zeitschrift 236, no. 2 (2001), 351-382. | MR | Zbl

[Ba4] P. Balmer, Products of degenerate quadratic forms, Compositio Math. 141 (2005), 1374-1404. | MR | Zbl

[BG] P. Balmer, S. Gille, Koszul complexes and symmetric forms over the punctured affine space, Proceedings of the London Mathematical Society 91, no 2 (2005), 273-299. | MR | Zbl

[BW] P. Balmer, C. Walter, A Gersten-Witt spectral sequence for regular schemes, Annales Scientifiques de l’ENS. 35, no. 1 (2002), 127-152. | MR | EuDML | Zbl | Numdam

[BM] J. Barge, F. Morel, Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels, C. R. Acad. Sci. Paris 330 (2000), 287-290. | MR

[BO] J. Barge, M. Ojanguren, Fibrés algébriques sur une surface réelle, Comment. Math. Helv. 62 (1987), 616-629. | MR | EuDML | Zbl

[BOU] N. Bourbaki, Algèbre, Eléments de mathématiques, chapitre 10, Masson (1980), Paris. | MR | Zbl

[BS1] S. M. Bhatwadekar, Raja Sridharan, Projective generation of curves in polynomial extensions of an affine domain and a question of Nori, Invent. Math. 133 (1998), 161-192. | MR | Zbl

[BS2] S. M. Bhatwadekar, Raja Sridharan, Zero cycles and the Euler class groups of smooth real affine variety, Invent. Math. 136 (1999), 287-322. | MR | Zbl

[BS3] S. M. Bhatwadekar, Raja Sridharan, The Euler class group of a noetherian ring, Compositio Math. 122 (2000), 183-222. | MR | Zbl

[BH] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge, 1993. | MR | Zbl

[Fa] J. Fasel, The Chow-Witt ring, Doc. Math. 12 (2007), 275–312. | MR | EuDML | Zbl

[Fu] W. Fulton, Intersection theory, Ergebnisse der Math. und ihrer Grenzgebiete (1984), Springer. | MR | Zbl

[Gi1] S. Gille, On Witt-groups with support, Thèse, 2001.

[Gi2] S. Gille, A transfer morphism for Witt groups, J. reine angew. Math. 564 (2003), 215-233. | MR | Zbl

[Gi3] S. Gille, A graded Gersten-Witt complex for schemes with dualizing complex and the Chow group, J. Pure Appl. Algebra 208 (2007), no. 2, 391–419. | MR | Zbl

[Gi4] S. Gille, The general dévissage theorem for Witt groups of schemes Arch. Math. (Basel) 88 (2007), no. 4, 333–343. | MR | Zbl

[Gro1] A. Grothendieck, Eléments de géométrie algébrique (EGA) II, Publ. math IHES 32 (1967).

[Gro2] A. Grothendieck, Eléments de géométrie algébrique (EGA) III, Publ. math IHES 32 (1967).

[Gro3] A. Grothendieck, Eléments de géométrie algébrique (EGA) IV, Publ. math IHES 32 (1967). | Zbl | Numdam

[Ha1] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20 (1966), Springer. | MR | EuDML

[Ha2] R Hartshorne, Algebraic geometry, Graduate text in Math. 52 (1977), Springer. | MR

[Kn] M. Knebusch, On algebraic curves over real closed fields I, Math. Zeitschrift 150 (1976), 49-70. | MR | EuDML | Zbl

[Ku] E. Kunz, Kähler differentials, Adv. lectures in Math. (1986), Vieweg und Sohn. | MR | Zbl

[Ma] B. Magurn, An algebraic introduction to K-theory, Encyclopedia of Math. and its Applic. 87 (2002). | MR | Zbl

[Mat] H. Matsumura, Commutative ring theory, Cambridge Studies in Adv. Math., Cambridge University Press (1986), Cambridge.

[Mi] J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1969-1970), 318-344. | MR | EuDML

[MH] J. Milnor, D. Husemoller, Symmetric bilinear forms, Ergebnisse der Math. und ihrer Grenzgebiete 73 (1973), Springer. | MR | Zbl

[Mo] F. Morel, 𝔸 1 -homotopy classification of vector bundles over smooth affine schemes, preprint available at http ://www.mathematik.uni-muenchen.de/ morel/preprint.html

[Mu1] M. P. Murthy, A survey of obstruction theory for projective modules of top rank, Contemp. Math. 243 (1999), 153-174. | MR | Zbl

[Mu2] M. P. Murthy, Zero cycles and projective modules, Ann. Math. 140 (1994), 405-434. | MR | Zbl

[Pl] B. R. Plumstead, The conjectures of Eisenbud and Evans, Amer. Journal of Math. 105 (1983), 1417-1433. | MR | Zbl

[QSS] H.-G. Quebbemann, W. Scharlau, M.Schulte, Quadratic and hermitian forms in additive and abelian categories, Journal of Algebra 59, no. 2 (1979), 264-290. | MR | Zbl

[Ro] M. Rost, Chow groups with coefficients, Doc. Math. 1 (1996), 319-193. | MR | EuDML | Zbl

[Sc] W. Scharlau, Quadratic and hermitian forms, Grundlehren der math. Wissen. 270 (1985), Springer. | MR | Zbl

[Sch] M. Schmid, Wittringhomologie, Thèse, 1997.

[Se] J.-P. Serre, Corps locaux, Public. institut math. université Nancago VIII (1968), Hermann. | MR

[Sw] R. G. Swan, A cancellation theorem for projective modules in the metastable range, Invent. Math. 122 (1985), 113-153. | MR | EuDML

[Vo] V. Voevodsky, Motivic cohomology with /2 coefficients, Public. Hautes Etudes Sci. 98 (2003), 59-104. | MR | EuDML | Zbl | Numdam

[We] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Adv. Math., Cambridge University Press (1994), Cambridge. | MR | Zbl

Cité par Sources :