C. R. FLETCHER
 Equivalent Conditions for Unique Factorization

Publications du Département de Mathématiques de Lyon, 1971, tome 8, fascicule 1
, p. 13-22
http://www.numdam.org/item?id=PDML_1971__8_1_13_0
© Université de Lyon, 1971, tous droits réservés.
L'accès aux archives de la série «Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

EQUIVALENT CONDITIONS FOR UNIQUE FACTORIZATION

by C.R. FLETCHER

University College of Wales, Aberystwyth.

1-INTRODUCTION.

This paper forms the main part of an address given at the University of Lyon in May 1971. Results on Euclidean rings, which were also stated, will shortly be appearing in the Journal of the London Mathematical Society (see (3)), and will not be repeated here. The terminology used in the sequel was defined in (1) and (2). All rings are commutative and have identity elements.

In (2) we showed that if R is a pseudo-domain having the property that every non-unit element has an irreducible decomposition, then R is a unique factorization ring (UFR) if and only if every irreducible element is prime. This résult we now generalize, and we also consider the generalization of other equivalent conditions from the theory of UFD's.

2 - MAIN RESULT.
THEOREM 1. - R is a ring in which every non-unit element has an irreducible decomposition. Then R is a UFR if and only if every irreducible is prime.

PROOF. - One way rod is trivial. For suppose R is a UFR, then from (2), $R \equiv R_{1} \oplus \cdots \oplus R_{n}$ where R_{i} is a UFPD for $i=1, \ldots, n$. If p is irreducible in R and $p \mid a b$, then p is of the form ($u_{1}, \ldots, p_{i}, \ldots, u_{n}$) where p_{i} is irreducible in R_{i} and $u_{j}(j \neq i)$ is a unit in R_{j}, and $P_{i} \mid a_{i} b_{i}$ with an obvious notations. The result from (2) mentioned above proves that p_{i} is prime in R_{i}, and hence $p_{i} \mid a_{i}$ or $p_{i} \mid b_{i}$. Therefore $p \mid a$ or $p \mid b$ and p is prime in R.

To prove the converse we require some further results.
PROPOSITION 2. - If R is a ring in which every non-unit element has an irreducible decomposition, and if every irreducible element of R is prime, then the factors of the relevant part of each U-decomposetion of 0 are unique up to associativity, i.e. if

$$
0=()\left(\alpha_{1}^{m_{1}} \cdots \alpha_{n}^{m}\right)=()\left(\beta_{1}^{k_{1}} \cdots \beta_{l}^{k_{l}}\right)
$$

where α_{i} and α_{j} are not associate for $i \neq j$, and β_{r} and β_{s} are not associate for $r \neq s$, then $n=\ell$ and α_{i} and β_{i} are associate for $i=1, \ldots, n$ after a suitable renombering of the β 's. (At this stage $m_{i} \neq k_{i}$ necessarily).

PROOF. - $\alpha_{i} \mid \beta_{1}^{k_{1}} \cdots \beta_{l}^{k} \ell$ and since α_{i} is irreducible and hence prime we have $\alpha_{i} \mid \beta_{j}$ say. Similarly $\beta_{j} \mid \alpha_{1}^{m_{1}} \cdots \alpha_{n}^{m_{n}}$ and $\beta_{j} \mid \alpha_{k}$ say. Therefore $\alpha_{i} \mid \alpha_{k}$, and either α_{i} and α_{k} are associate or $\alpha_{i} \in U\left(\alpha_{k}\right)$. In both cases we have $i=k$ and α_{i} and β_{j} are assciate. Thus taking each factor in turn we get α_{1} and $\beta_{j_{1}}, \cdots, \alpha_{n}$ and $\beta_{j_{n}}$ are associate. Now if $\beta_{j_{s}}$ are associate, then α_{r} and α_{s} are associate and $r=s$. Hence ${ }^{\beta_{j_{1}}}, \cdots, \beta_{j_{n}}$ represent distinct associativity classes, and $\ell \geqslant n$. Similarly, starting with the β^{\prime} 's we may prove that $n \geqslant \ell$, which implies $n=\ell$. We have also proved that α_{i} and β_{i} are associate for $i=1, \ldots, n$ after a suitable renumbering of the β 's.

In the sequel $0=()\left(\alpha_{1}^{m_{1}} \cdots \alpha_{n}^{m}\right)$ will always be a U decomposition of 0 where α_{i} is not an associate of α_{j} for $i \neq j$.

PROPOSITION 3. - R is a ring in which every non-unit element has an irreducible decomposition and every irreducible element is prime. If $0=()\left(\alpha_{1}^{m_{1}} \cdots \alpha_{n}^{m_{n}}\right)$ then
(i) $\alpha_{i} \notin U\left(\alpha_{1}^{m_{1}} \cdots \alpha_{i} d_{i} \cdots a_{n}^{m_{n}}\right)$ where $0 \leqslant d_{i}<m_{i}$ for

$$
i=1, \ldots, n
$$

(ii) $\alpha_{i} \in U\left(\alpha_{i}{ }_{i}\right)$ for $i=1, \ldots, n$.

PROOF. - (i) Immediate.
(ii) Suppose $i=1$ and put $\alpha_{1}=\alpha, m_{1}=m$. If $n=1$ then
$0=()\left(\alpha^{\text {II }}\right)$ and $\alpha \in U\left(\alpha^{\text {mi }}\right)$. If $n>1$ then $0=\alpha^{m}\left(\alpha-\left(\alpha-a_{2}^{m_{2}} \cdots \alpha_{n_{n}}^{m_{n}}\right)\right.$. Suppose $\alpha-\alpha_{2}^{m_{2}} \cdots \alpha_{n}^{m_{n}}=u$ a unit, then $\alpha^{m+1}=\alpha^{m} u$ and $\alpha \in U\left(\alpha^{m}\right)$.
$\alpha-\alpha_{2}^{m_{2}} \cdots \alpha_{n}^{m_{n}}$ is a non-unit then it has an irreducible décomposition $d_{l} \cdots d_{g}$ and $\alpha^{m+1}=\alpha^{m} d_{l} \cdots d_{g}$. Since d_{i} is irreducible it is prime and $d_{i} \mid \alpha, i=1, \ldots, g$. Then either d_{i} and α are associate or $d_{i} \in U(\alpha)$. If the former then $\alpha_{2}^{m_{2}} \cdots \alpha_{n}^{m_{n}}=\alpha-d_{1} \cdots d_{g}$ implies that $\alpha \mid \alpha_{j}$ for some $j \geqslant 2$, and either α and α_{j} are asscite or $\alpha \in U\left(\alpha_{j}\right)$.

Contradiction from the U-decomposition of 0 . Therefore $d_{i} \in U(\alpha)$ and $d_{1} \cdots d_{g} \in U(\alpha)$. Hence $\alpha=d_{1} \cdots d_{g} r \alpha$ and $\alpha^{\frac{1}{m}}=d_{1} \cdots d_{g} \alpha^{m}=\alpha^{m+1}$, which gives $\alpha \in U\left(\alpha^{m}\right)$.

COROLLARY. - 0 has unique factorization.
PROFF. - Suppose $0=()\left(\alpha_{1}^{m_{1}} \cdots \alpha_{n}^{m_{n}}\right)=()\left(\beta_{1}^{k_{1}} \cdots \beta_{\ell}^{k_{l}}\right)$ then from Proposition 2, $\ell=n$ and α_{i} and β_{i} are associate ie. $0=()\left(\alpha_{1}^{m_{l}} \cdots \alpha_{n}^{m_{n}}\right)_{m_{i-1}}()\left(\alpha_{1}^{k_{1}} \cdots \alpha_{n}^{k_{n}}\right)$. If for some $i m_{k_{i}}>k_{i}$, then $\alpha_{i} \in U\left(\alpha_{1}^{m_{1}} \cdots \alpha_{i} \cdots \alpha_{n_{1}}^{m_{n}}\right)$ and $\alpha_{i} \in U\left(\alpha_{i}\right)$ from above. But $U\left(\alpha_{1}^{m_{1}} \cdots \alpha_{i}^{m_{i}} \cdots \alpha_{n}^{m_{n}}\right) \supseteq U\left(\alpha_{i}\right)$ and we have a contradiction.
Therefore $m_{i}=k_{i}$ for $i=1, \ldots, n$.
It is immediate that every zero-divisor irreducible in R has α_{i} as an associate for some i. Also we see that the U-decomposition of the product $\alpha_{1}^{d_{1}} \ldots \alpha_{n}^{d_{n}}$ is $\left(\alpha_{1}^{x_{1}} \ldots \alpha_{n}^{x_{n}}\right)$ $\left(\alpha_{1}^{y_{1} \ldots \alpha_{n}} y_{n}\right)$ where if $d_{i} \geqslant m_{i}$ then $x_{i}=d_{i} m_{i}$ and $y_{i}=m_{i}$, and if $d_{i}<m_{i}$ then $x_{i}=0$ and $y_{i}=d_{i}$.

We are now able to complete the proof of our main resuit.

PROOF of THEOREM 1. - Suppose r is a non-zero element of R with irreducible decompositions:

$$
r=p_{1} \cdots p_{k} \beta_{11} \cdots \beta_{1 k_{1}} \beta_{21} \cdots \beta_{n k}=q_{1} \cdots q_{\ell} \gamma_{11} \cdots \gamma_{1 \ell_{1}} \gamma_{21}
$$

$\cdots \gamma_{n \ell}$, where the $p^{\prime} s$ and $q^{\prime} s$ are ${ }^{n}$ regular and where $\beta_{i j}$ and $\gamma_{i j}{ }^{n}$ are associate to α_{i}. Substituting we have :

$$
r=u_{11} \cdots u_{n k_{n}} p_{1} \cdots p_{k} \alpha_{1}^{k_{1}} \cdots \alpha_{n}^{k_{n}}=v_{11} \cdots v_{n \ell_{n}}^{q_{1} \cdots q_{\ell} \alpha_{1}^{\ell_{1}} \cdots \alpha_{n}^{\ell}} .
$$

Let us suppose that $k_{1}<m_{1}$. Then if $k_{1}<\ell_{1}$ we may multiply through by $\alpha_{1}^{r_{1}} \alpha_{2}^{m_{2}} \cdots \alpha_{n}^{m_{n}}$ where $r_{1}=\max \left(0, m_{1}-\ell_{1}\right)$ to obtain :

$$
\begin{aligned}
& u_{11} \cdots u_{n k} p_{1} \cdots p_{k} \alpha_{1}^{k_{1}+r_{1}} \alpha_{2}^{k_{2}+m_{2}} \cdots \alpha_{n}^{k_{n}+m_{n}} \\
& =v_{11} \cdots v_{n \ell} q_{1} \cdots q_{\ell} \ell_{1}^{\ell_{1}+r_{1}} \alpha_{2}^{\ell_{2}+m_{2}} \cdots \alpha_{n}^{\ell+m_{n}} .
\end{aligned}
$$

The right hand side is zero since $\ell_{1}+r_{1} \geqslant m_{1}$. Therefore

$$
\alpha_{1}^{r_{1}} \alpha_{2}^{m_{2}} \cdots \alpha_{n}^{m}{ }_{\beta_{11}} \cdots \beta_{n k_{n}}=0
$$

since the P^{\prime} s are regular. Transforming to U -decomposition using Proposition 3 we have

$$
\left(\beta_{21} \cdots \beta_{n k}\right)\left(\beta_{11} \cdots \beta_{1 k_{1}} \alpha_{1}^{r_{1}} \alpha_{\alpha_{2}^{m}}^{m_{2}} \cdots \alpha_{n}^{m}\right)=0,
$$

which implies that $\beta_{11} \cdots \beta_{1 k_{1}} \alpha_{1}^{r_{1}} \alpha_{\alpha_{2}}^{m_{2}} \cdots \alpha_{n}^{m}=0$ from Proposition 3 of (1). Hence $\alpha_{1}^{k_{1}+r_{1}} \alpha_{2}^{m_{2}} \cdots \alpha_{n}=0$ which is impossible since $k_{1}+r_{1}<m_{1}$. We have thus proved that in this case $k_{1}=\ell_{1}$. Similarly if $\ell_{1}<k_{1}$ we may prove the same result.

Now suppose that $k_{1} \geqslant m_{1}$. If $\ell_{1}<m_{1}$ the above proof may be repeated with k_{1} and ℓ_{1} interchanged. Hence we suppose $k_{1}, \ell_{1} \geqslant m_{1}$.

We transform the original irreducible decompositions to U-decompositions using Proposition 3 and noting that in any statement $a \in U(b)$ or its negative, we may replace either element by an associate. Hence in both U-decompositions there will be exactly m_{1} elements associate to α_{1} in the relevant part. Now considering the elements associate to $\alpha_{2}, \cdots, \alpha_{n}$ we see that we have proved the uniqueness of the non-regular factors of r.

Turning to the regular factors, suppose p_{1} is in the relevant part. Then $p_{1} \mid r$ and therefore $p_{1} \mid q_{1}$, or $p_{1} \mid \gamma_{11}$ say. If latter holds then $p_{1} \in U\left(\gamma_{11}\right)$ (Proposition 1 of (2)) and $p_{1} \in U\left(\beta_{11}\right)$. Contradiction. Hence p_{1} and q_{1} are associate since $\mathrm{P}_{1} \notin \mathrm{U}\left(\mathrm{q}_{1}\right)=\left\{\right.$ units\}. Now q_{1} is also in the relevant part because otherwise $q_{1} \in U\left(\gamma_{11} \cdots \gamma_{n \ell}\right)$ which implies $p_{1} \in U\left(\beta_{11} \cdots \beta_{n k}\right)$ a contradiction as before. By cancellation we immediately see ${ }^{n}$ that the number of associates of p_{1} equals the number of associates of q_{1}, considering relevant parts only. Arguing in a like manner we prove that all regular factors in the relevant part are unique.

Putting the two results together we have proved that r has unique factorization and therefore R is a UFR.

3 - EQUIVALENT CONDITIONS.

The result in the previous section may lead one to suppose that a complete generalization of the usual equivalent conditions for a UFD is possible, but one is soon disillusioned. Ho-
wever we have the following.
THEOREM 4. - The following conditions on a ring R are equivalent.
(i) R is a UFR.
(ii) $\quad \mathrm{R}$ satisfies the maximum condition for principal ideals, and every irreducible element is prime.
(iii) Every non-unit element of R has a factorization into primes.

PROOF. - $|i| \Rightarrow(i i)$. - If R is a UFR then every irreducible is prime (Theorem 1). From the structure theorem (2), $R \cong R_{1} \oplus \cdots \oplus R_{n}$ where each R_{i} is either a UFD or a special PIR. Hence each R_{i} satisfies the maximum condition on principal ideals, and it is a simple matter to show that R does also. $(i i) \Longrightarrow(i i i)$. - Consider the set of principal ideals generated by non-unit elements not having an irreducible decomposition. The existence of the maximum gives the contradiction (see (1) Theorem 7). Then every non-unit has an irreducible decomposition and hence a prime decomposition.
(iii) $\Rightarrow(i)$. From Theorem 1 it is sufficient to prove that every irreducible element is prime. So suppose q is irreducible and $q=p_{1} \cdots p_{n}$ where each p_{i} is prime. Then $q \mid p_{i}$ for some i, and q and p_{i} are associate. Therefore q is prime.

The next result gives conditions that are necessary but not sufficient.

THEOREM 5. - If R is a UFR then the following conditions hold.
(i) R satisfies the maximum condition for principal ideals, and the intersection of any two principal ideals is principal (i.e. any two elements have an 1.c.m.).
(ii) R satisfies the maximum condition for principal ideals, and the set of principal ideals containing any two principal ideals has a unique minimum (i.e. anay two elements have a g.c.d.).
(iii) Every non-zero prime ideal ($\neq \mathrm{R}$) of R contains a non-zero principal prime ideal.

PROOF. - $R \cong R_{1} \oplus \ldots \oplus R_{n}$ where each R_{i} is either a UFD or a special PIR. Hence conditions (i) and (ii) are satisfied for each R_{i}, and therefore also for R. Now suppose P is a prime ideal and $P \neq(0), R$. Then there exists a non-zero, non-unit $r P$ which has a prime decomposition $p_{1} \cdots p_{m}$ from Theorem 4. Thus $\left(p_{j}\right) \subseteq P$ for some j.

To prove that no part of Theorem 5 has a converse we need two couter-examples. Both are constructed from the familiar example $Z[\sqrt{-3}]$ is domain theory. First consider $B_{4}=\{(m, n)$ $\left.\mid m, n \in Z_{4}\right\}$ where
and

$$
\begin{aligned}
& \left(m_{1}, n_{1}\right)+\left(m_{2}, n_{2}\right)=\left(m_{1}+m_{2}, n_{1}+n_{2}\right) \\
& \left(m_{1}, n_{1}\right) \cdot\left(m_{2}, n_{2}\right)=\left(m_{1} m_{2}+n_{1} n_{2}, m_{1} n_{2}+n_{1} m_{2}\right) .
\end{aligned}
$$

Then (i) and (i) are satisfied since in pictorial form the ideals are

(0)
where $J=(2,2) B_{4}, I_{1}=(2,0) B_{4}=(0,2) B_{4}, I_{2}=(1,3) B_{4}=$ $(3,1) B_{4}, I_{3}=(3,3) B_{4}=(1,1) B_{4}$, and M is the unique maximal ideal consisting of all non-units. However $(2,0)$ is irreducible but not prime, since $(1,1)(1,1) \in I_{1}$. Therefore from Theorem 1 B_{4} is not a UFR. We remark in passing that it is still an open question whether strengthening the hypothèses, so that the sum of principal ideals is principal, will ensure that the ring is a UFR.

The second counter-example is $R=B \oplus Z_{4}$ where $B=Z[\sqrt{-3}]$. R is not a UFR since B is not a UFD (see (2) Theorem 10). The prime elements of R are of the form (p, v) and (u, q) where p, q are prime and u, v are units in B and Z_{4} respectively. 0 is prime in B and 2 is the only prime in Z_{4}. Suppose $P(\neq(0), R)$ is a prime ideal of R. Then not all elements of P are of the form $(b, 0)$ since $(0,2)(0,2) \in P$. If P has an element of the form ($b, 3$) then $(b, 3)(1,3)=(b, 1) \in P$ and $(0,1) R \subseteq P$. Finally suppose $(b, 2) \in P$.

Then $(b, 2)(1,2)=(b, 0)=(b, 1)(1,0) \in P$. The case $(b, 1) \in P$ has been dealt with. Suppose $(1,0) \in P$. Now $(6,2)(0,1)=(0,2) \in P$ and therefore $(1,0)+(0,2)=(1,2) \in P$. Hence $(1,2) R \subseteq P$. We have proved that every non-zero prime ideal of R contains a nonzero principal prime ideal.

It is perhaps surprising to find that a ring satisfying the maximum condition for principal ideals and having the additional property that every irreducible is prime is a UFR, whereas one with the additional property that eyery pair of elements has a g.c.d. is not a UFR in general. In the domain case of course the g.c.d. property implies that every irreducible is prime.

REFERENCES :

[1] FLETCHER, C.R. Unique factorization rings. Proc. Cambridge Philos. Soc. 65 (1969), 579-583.
[2] FLETCHER, C.R. The structure of unique factorization rings. Proc. Cambridge Philos. Soc. 67 (1970), 535-540.
[3] FLETCHER, C.R. Euclidean rings. J. London Math. Soc. (to appear).

Manuscrit rec̀u le24 juin 1971

