MANABU HARADA

Note on Categories of Indecomposable Modules

Publications du Département de Mathématiques de Lyon, 1972, tome 9, fascicule 4 , p. 11-25

<http://www.numdam.org/item?id=PDML_1972_9_4_11_0>

© Université de Lyon, 1972, tous droits réservés.

L'accès aux archives de la série « Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

NOTE ON CATEGORIES OF INDECOMPOSABLE MODULES

by Manabu HARADA

Let R be a ring with identity and M a unitary right R-module wich is a directsum of indecomposable, injective modules. E. Matlis [13] posed the following question : for any direct summand L of M, is L also a directsum of indecomposable injective modules ? Recently, U.S. Kahlon [9] and K. Yamagata [16] studied this problem under an assumption that the singular submodule of L is equal to zero.

In this short note, we shall show that if the singular submodule of L is equal to zero, then the affirmative answer of Matlis' problem is an immediate consequence from [6] and [10]. Especially, in the section 4, we shall give simpler proofs of generalized Kahlon' results [9]. In sections 2 and 3, we shall give some supplementary results of [7] and [8].

I. DEFINITIONS

Let R be a ring with identity. We assume that all modules in this note are unitary right R-modules. Let M be an R-module. If $\operatorname{End}_{R}(M) = S_{M}$ is a local ring (the Jacobson radical is a unique maximal ideal among left an right ideals), Mis called *completely indecomposable*.

Let \mathscr{K} be the induced full sub-category from all completely indecomposable modules M_{α} in the category of right *R*-modules \mathscr{M}_{R} , namely every object in \mathscr{K} is a direct sum of some family of $\{M_{\alpha}\}$ (see [6],§ 3). Let M^{1} , M^{2} be objects in \mathscr{K} and $M = \sum_{I} \mathfrak{K} \mathfrak{M}_{\alpha}^{i}$; $M_{\alpha}^{i} \in \{M_{\alpha}\}$. We put $[M^{1}, M^{2}] \cap \mathfrak{I}' = \{f \mid \in \operatorname{Hom}_{R}(M^{1}, M^{2}), p_{\beta}f_{\beta}^{i} : M_{\beta}^{i} + M_{\beta}^{i}$ is non-isomorphic for all $\beta \in I^{1}$, $\beta' \in I^{2}$, where i_{β}^{1} , $: M_{\beta}^{1}$, $\neq M^{1}$ is the injection and $p_{\beta}^{2}: M^{2} \neq M_{\beta}^{2}$ is the projection}. Then \mathcal{J}' is an ideal in \mathcal{A} and \mathcal{A}/\mathcal{J}' is a completely reducible C_{3} -abelian category by [6], Theorem 7. If $M^{1} = M^{2}$, we denote $[M^{1}, M^{1}] \cap \mathcal{J}'$ by \mathcal{J}' .

Let A and f be an object and a morphism in \mathscr{K} , respectively. By \overline{A} and \overline{f} we denote the residue classes of A and f in \mathscr{A}/\mathscr{I} '. Let $A \supset B$ be in \mathscr{K} and i the inclusion of B to A. If \overline{i} is isomorphic in \mathscr{K}/\mathscr{I} ', we say B is a *dense submodule* of A (see [7], p. 310-311). We assume $A = C \oplus D$ as R-modules and let e the projection of A onto C. By \overline{C} we denote Im \overline{e} in \mathscr{K}/\mathscr{I} ', even though C is not in \mathscr{A} . Next, we assume that $A \supset B$ are in \mathscr{K} and $B = \sum_{K} \oplus T_{\alpha}$ as R-modules. If $\sum_{K} \oplus T_{\alpha}'$ is a direct summand of A for any finite subset K' of K, then we say that B is a *finitely direct summand* of A (with respect to the decomposition $\sum_{K} \oplus T_{\alpha}$). It is clear that every directsum of injective K modules is a finitely direct summand of its extension module.

We summarize here definitions of the exchange property given in [6], [7], [8] and [10].

Let $\{M_{\alpha}\}_{I}$ and $\{N_{\beta}\}_{J}$ be sets of completely indecomposable modules. We put $M = \sum_{T} \bigoplus M_{\alpha}$ we recall Condition II given in [6], §3.

II (Take out). For any subset I' of I and any other decomposition $M = \sum_{J} \Theta N_{\beta}, \text{ there exists a subset } \{N_{\phi(\gamma)}\}_{\gamma \in I'}, \text{ of } \{N_{\beta}\}_{J} \text{ such that } M_{\widehat{\gamma}} N_{\phi(\gamma)}$ for all $\gamma \in I'$ and $M = \sum_{I'} \Theta N_{\phi(\gamma)} \oplus \sum_{\alpha \in I-I'} \Theta M.$

II' (Put in). For the same assumption as above, there exists a subset $\{N_{\psi(\gamma)}\}_{\gamma \in I}$, such that $M_{\gamma} \approx N_{\psi(\gamma)}$ for all $\gamma \in I'$ and $M = \sum_{\alpha \in I} \Phi M_{\alpha} \oplus \Sigma \oplus N_{\beta \in J - \psi(I')} B$ where ϕ and ψ are one-to-one mappings of I' into J.

If we replace the subset I' by I-I', then II and II' are equivalent by Azumaya's theorem [1]. Furthermore, Azumaya [1] showed that II and II' are satisfied for any finite subset I' of I.

We remark that if a given decomposition $M = \sum_{I} \bigoplus M_{\alpha}$ satisfies II or II', then any decomposition $M = \sum_{J} \bigoplus N_{\beta}$ does the same property. Because, let $M = \sum_{K} \bigoplus T_{\delta}$ be another decomposition with T_{δ} indecomposable. Then there exists an automorphism σ of M such that $\sigma(N_{\beta}) = M_{\pi(\beta)}$ by Azumaya's theorem, where π is a one-to-one mapping of J to I. We apply II or II' for the decompositions $M = \sum_{K} \bigoplus M_{\pi(\beta)} = \sum_{K} \bigoplus \sigma(T_{\delta})$. Then we have $M = \sum_{Y \in J'} \bigoplus \sigma(T_{\phi(Y)}) \bigoplus \sum_{K \in J-J'} \bigoplus M_{\pi(\beta)}$ or $M = \sum_{K} \bigoplus \sigma(T_{\delta})$. Then we have $M = \sum_{Y \in J'} \bigoplus \sigma(T_{\phi(Y)}) \bigoplus \sum_{K \in J-J'} \bigoplus M_{\pi(\beta)}$ $\bigoplus_{K} \sum_{K \in K-\psi(J')} \bigoplus \sigma(T_{\delta})$. Hence, $M = \sigma^{-1}(M) = \bigoplus_{J'} \bigoplus \sigma(Y) \bigoplus_{K \in J-J'} \bigoplus M_{K}(\beta)$ $\bigoplus_{K \in K-\psi(J')} \max_{K} \max_{K \in K-\psi(J')} \bigoplus_{K \in K-\psi(J')} \max_{K \in K-\psi(K,K)} \max_{K$

We note II and II are independent for fixed two decompositions $M = \sum_{I} \oplus M_{\alpha} = \sum_{J} \oplus N_{\beta} \text{ and a given subset } I' \text{ of } I. \text{ For example, we assume there}$ exist non-isomorphic monomorphisms $f_i \text{ of } M_i \text{ to } M_{i+1}$ for all $i \in K \subseteq I$. We put $M'_i = \{m_i + f_i(m_i) \mid \in M_I \oplus M_{i+1}, m_i \in M_i\}$. Then $M = M'_1 \oplus M_2 \oplus M'_3 \oplus \ldots \oplus M_o =$ $M_1 \oplus M'_2 \oplus M_3 \oplus M'_4 \oplus \ldots \oplus M_o$, where $M_o = \sum_{\alpha \in I - K} \oplus M_{\alpha}$. It is clear that $n' = M'_1 \oplus M'_2 \oplus \ldots \oplus M_o$ has the property II for the second decomposition in the above. However, by the proof of [6], Lemma 9 we know that if N had the property II', then $\{f_i\}$ would be a locally semi-T-nilpotent system (see (see [7], § 1 for the definition). Similarly, $N = M_1 \oplus M_3 \oplus \ldots \oplus M_o$ has the property II' for the first decomposition, however if N had the property II, then $\{f_i\}$ would be a locally semi-T-nilpotent system.

We say that a direct summand T of M has the exchange property in M if for any decomposition $M = \sum_{I} \bigoplus U_{\delta} (U_{\delta} \text{ are not necessarily indecomposable}),$ $M = T \oplus \Sigma \oplus U_{\delta}'$ and $U_{\delta} \supseteq U_{\delta}'$ for all δJ . Especially, if T has the above property, whenever all U_{δ} are indecomposable, we say T has the exchange property in M for indecomposable modules. We refer the reader for terminologies to [6] and [7].

2. DIRECT SUMMANDS

First we recall somme of main theorems in [7] and [10].

THEOREM 1 ([7],[10]). - Let M be a direct sum of a family of completely indecomposable modules $\{M_{\alpha}\}_{I}$. Then the following statements are equivalent.

1) M satisfies the property of "take out"

2) Every direct summand of M has the exchange property in M

3) Every direct summand of M has the exchange property in M for indecomposable modules

4) $\{M_{\alpha}\}_{T}$ is a locally semi-T-nilpotent system

5) \mathcal{J} ' is the Jacobson radical \mathcal{J} of $S = \operatorname{End}_{R}(M)$

6) Every finitely direct summand M' of M such that $M' = \sum_{K} \bigoplus_{K} T_{\alpha}$ is a direct summand of M for any [K] and any family $\{T_{\alpha}\}$

6') 6) is valid for any K with $K = \aleph_0$, and

7) 6') is valid whenever all T_{α} are completely indecomposable, 8) S/ is a regular ring (and self injective as a one sided module) and every idempotents in S/J are lifted to S, where |K| is the cardinal number of K.

14

Proof. 2) \longleftrightarrow 4) is proved by [8], Corollary to Proposition 1. We note 1), 4) in § 1. 2) \longrightarrow 3) \longrightarrow 1) is clear. 4) \longleftrightarrow 5) is proved by [10], Theorem. 6) \rightarrow 6') \rightarrow 7) is trivial. 7) \rightarrow 4). Let $\{M_{\alpha i}\}_{1}^{\infty}$ be any countable sub-family of $\{M_{\alpha}\}_{T}$ and let $\{f_{i}\}_{1}^{\infty}$ be a family of non-isomorphisms $f_{i}: M_{i} = M_{\alpha i} \rightarrow M_{i+1} = M_{\alpha i}$ $M_{\alpha i+1}$. Put $M' = \sum_{1}^{\infty} \bigoplus M'_{i}$, where $M'_{i} = \{m_{i}+f_{i}(m_{i}) | \in M, m_{i} \in M_{i}\}$. Since $\sum_{i=1}^{n} \oplus M_{i}^{\prime} \oplus M_{n+1} = \sum_{i=1}^{n+1} \oplus M_{i}^{\prime}, M^{\prime} \text{ is a finitely direct summand of } M. \text{ Hence }, M^{\prime}$ is direct summand of $\sum_{\tau} \oplus M_{i}$ (= M_{o}) $\leq M$ by 7). We know from [8], Theorem 2 that M' is a dense submodule of M_o . Therefore, $M' = M_o$ by [6], lemma 7, which means that $\{M_i\}_{1}^{\infty}$ is a locally semi-T-nilpotent (cf. [6], the proof of Lemma 9). from 2) that all T_{α} are indecomposable. Now, we consider the above modules in \mathscr{A} /1 '. Let *i* be the inclusion of *M*' to *M*. Since *M*' is a finitely direct summand of M and \mathcal{A}/\mathcal{I} ' is a C₃-abelian, \overline{i} is the inclusion of \overline{M} ' into \overline{M} and $\overline{M}' = \sum_{V} \oplus \overline{T}_{\alpha}$. Then \overline{M}' is a coretract of \overline{M} by [6], Theorem 7. $\{T_{\alpha}\}_{K}$ is a locally semi-T-nilpotent system. Therefore, i is a coretract of M by 5) (cf. [7], the proof of Proposition 2). 5) \leftrightarrow 8) It is clear from [6], Lemma ? and 13 Corollary to Lemma 6.

Remark 1. In the above proof of 4) $\longrightarrow 6$) we only make use of a fact that $\{T_{\alpha}\}_{\kappa}$ is a locally semi-T-nilpotent system.

Next, we study a general type of Matlis' problem. The following theorem combines [10] and [14].

THEOREM 2. - Let M be a directsum of completely indecomposable modules M_{α} ; $M_{\alpha} = \sum_{I} \oplus M_{\alpha}$ and $\{M_{\beta}\}_{J}$ the sub-family of countably generated R-modules M_{β} of $\{M_{\alpha}\}_{I}$. We assume $\{M_{\gamma}\}_{I-J}$ is a locally semi-T-nilpotent system. Then every direct summand of M is in St. Proof. Let $M = N_1 \oplus N_2$ and K = I-J. Each N_i contains a dense submodule $T_i = \sum_{L_i} \oplus M'_{\gamma i}$ such that $M \approx T_1 \oplus T_2$ by [6], Theorem 1 for i = 1, 2, where $M'_{\gamma i}$ is isomorphic to some M_α ; $\alpha \in I$. We divide L_i into two partitions $L_i = J_i \cup K_i$ such that for $\gamma_i \in J_i$ (resp. K_i) $M'_{\gamma i}$ is isomorphic to some $M_\alpha; \alpha \in J$ (resp. K). Since $\{M'_{\gamma i}\}_{K_i}$ is locally semi-T-nilpotent, $T'_i = \sum_{K_i} \oplus M'_{\gamma i}$ is a direct summand of N_i by Remark 1 and [7], proposition 2, say $N_i = T'_i \oplus N'_i$ Furthermore, $T'_1 \oplus T'_2$ has the exchange property in M by [7], Theorem 2. Hence, $N'_1 \oplus N'_2 \approx \sum_{J'} \oplus M_\beta \oplus \sum_{K'} \oplus M_{\gamma'}$. We consider those modules in \mathfrak{M}/\mathcal{J} '. Then $\tilde{M} = \tilde{T}'_1 \oplus \tilde{T}'_2 \oplus \sum_{J'} \oplus \tilde{M}'_{\gamma i} \oplus \sum_{K'} \oplus \tilde{M}'_{\gamma i}$ on the other hand, $\tilde{M} = \tilde{N}_1 \oplus \tilde{N}_2$ $= \tilde{T}'_1 \oplus \tilde{N}'_1 \oplus \tilde{T}'_2 \oplus \tilde{N}'_2^{-1} = \tilde{T}'_1 \oplus \tilde{T}'_2 \oplus \sum_{J'} \oplus \tilde{M}'_{\beta} \oplus \sum_{K'} \oplus \tilde{M}'_{\gamma}$. Since all $M'_{\gamma i}$ in the left side are $\sum_{J_1} \oplus \tilde{M}'_{\gamma i} \oplus \sum_{J_2} \oplus \tilde{M}'_{\gamma i} \approx \sum_{J'} \oplus \tilde{M}'_{\beta} \oplus \sum_{K'} \oplus \tilde{M}'_{\gamma}$. Since all $M'_{\gamma i}$ in the left side are countably generated, $K' = \emptyset$ by [6], Theorem 7. Therefore, N'_i is in \mathfrak{M} by [14] or [7], Proposition 3. We have completed the proof.

In Theorem 2 if N_1 is injective, NN_1 is in \mathcal{H} by [4], [9] or [15] without any assumption. Similarly

PROPOSITION 1. - Let M be in \mathcal{A} and N a direct summand of M. If N is projective, N is in \mathcal{A} .

Proof. By [11], Theorem 1, N is a direct sum of countably generated R-submodules P_{α} . Furthermore, P_{α} is in \mathcal{A} by [7], Proposition 3. Hence, N is in \mathcal{A} .

The following corollary was given with an assumption that J(P) is small in P by [12], Theorem 5.5 and [7], Proposition 5.

COROLLARY. - Let M be in A and R-projective. Then every direct summand P of M is in \mathcal{A} .

It is also clear.

We give a property of dense submodules.

PROPOSITION 2. - Let M be in A and N a direct summand of M. Then there exists a submodule N' of satisfying the following properties : 1) N' is in A, 2) N' is a finitely direct summand of N and 3) If T = $\sum \bigoplus T_{\alpha}$ is finitely direct summand of N, T is isomorphic to a direct summand of N', where T_{α} 's are indecomposable. Especially, every countable generated R-submodule of N is isomorphic to a submodule of N'. Every submodule N'' of N satisfying 1) and 2) is isomorphic to a direct summand of any dense submodule of N.

Proof. Let N' be a dense submodule of N. Then N' satisfies 1) and 2) by [7], Proposition 2. Let e and e_{α} be projections of M to N and T_{α} with respect to given decompositions. Then $ee_{\alpha} = e_{\alpha}$ for all $\alpha \in J$. We consider those modules in \mathcal{A}/\mathcal{J} . Since T is a finitely direct summand of $N(\subseteq M)$, $\overline{T} = \sum_{J} \oplus \overline{T}_{\alpha} \subseteq Im \ \overline{e} = \overline{N'}$. Hence, T is isomorphic to a direct summand of N' by [6], Theorem 7. We easily see that for two finitely generated submodules $T_1 \supseteq T_2$ in N, we can find a direct summand T'_i of N such that $T'_i \supseteq T'_i$, $T'_1 \supseteq T'_2$ and T'_i is a finite directsum of indecomposable modules for i = 1, 2 (cf. [7], the proof of Proposition 3). Since $T'_1 \supseteq T'_2$, we can find a monomorphism of T_1 to N' which is an extension of a given monomorphism of T_2 to N' by [6], Theorem 7.

17

Hence, every countably generated R-submodule of N is isomorphic to a submodule of N' by the standard argument. Let N'' be a submodule satisfying 1) and 2). Then $\bar{N}' \leq \bar{N}'$. Hence, the last statement is clear from [6], theorem 7.

3. EXCHANGE PROPERTY

It seems to the author that the difficulty of the exchange property in M comes from the following facts. Let M be in \mathscr{A} and $M = N_1 \oplus N_2 \oplus N_3$ as R-modules. It is well known from [2] that if N_1 and N_2 have the exchange property in M, then so is $N_1 \oplus N_2$, however the converse is not true. Furthermore, even if neither N_1 nor N_2 has the exchange property in M, it is possible that $N_1 \oplus N_2$ does.

We note that if a direct summand L of M has the exchange property, then L is in \mathcal{A} . The following theorem is a slight generalization of some parts in Theorem 1.

THEOREM 3. - Let M be in \mathcal{A} and $M = N_1 \oplus N_2$. Let f be the projection of M Onto N_1 . Then $f \mathcal{J}' f = f \mathcal{J} f$ if and only if every direct summand of N_1 has the exchange property in M. In the case N_2 also has the exchange property in M, where \mathcal{J}' is the ideal defined in §1 and \mathcal{J} is the Jacobson radical of $S = \operatorname{End}_{p}(M)$.

Proof. "Only if". Let $M = \sum_{I} \bigoplus M_{\alpha}$ and M'_{α} 's are completely indecomposable. We can find a subset J of I such that $\overline{M}_{J} = \sum_{J} \bigoplus \overline{M}_{\alpha} \approx \operatorname{Im} \overline{f}$ in \mathcal{A}/J' by [6], Theorem 7. Let e be the projection of M to M_{J} . Then $fS/fJ' \approx eS/eJ'$. Hence, there exist $a \in eSf$, $b \in fSe$ such that $ba \equiv f \pmod{3'}$. Put $f-ba = n \in \mathbf{J'}$, then $n \in f \notin f = f \notin f$, which tis the radical of $S_{N_1} = \operatorname{End}_R(N_1)$. Hence, bais an automorphism of fS as an S-module. Therefore, $eS = f_1S \oplus f_2S$ and $f_1S \stackrel{2}{\Rightarrow} fS$, $f_2S = \operatorname{Ker} b$ and $f_i^2 = f_i$. Since b induces $eS/e \notin f \approx fS/f \notin f$, $f_2S = f_2 \notin f \in \mathcal{J'}$. Hence, $f_2 = 0$ by [1], Theorem 1 or [6], Lemma 7 and $eS \approx fS$, which implies $N_1 \approx M_J$. Therefore, $\{M_{\alpha}\}_J$ is a locally semi-T-nilpotent system by Theorem 1. Thus, we have poved "only if" from [8], Corollary to Theorem 2. "if". $N_1 = \sum_K \oplus M_Y'$ and $\{M_Y'\}$ is a locally semi-T-nilpotent system. by [8], Corollary to Theorem 2. Hence, $f \notin f = f \notin f$ by Theorem 1 and [6], Lemma 5. The remaining part is clear from [8], Theorem 2.

COROLLARY . - Let M and N₁ be as above. If for every monomorphism g in S_{N_1} . Im g is a direct summand of N (i.e. $gS_{N_1} = eS_{N_1}$, $e^2 = e$), then N₂ and every direct summand of N₁ have the exchange property in M. eEspecially, if N₁ is quasi-injective, N_i has the exchange property in M for i = 1, 2, (cf. [4]).

Proof. Let $M = N_1 \oplus N_2$ and f be the projection of M to N_1 . We take any element α in fJ'f. Then Ker $(1-\alpha) = C$ by [1], Theorem 2 and Im $(1-\alpha) =$ $Im((1-\alpha)|N_1) \oplus N_2$. Since Im $((1-\alpha)|N_1)$ is a direct summand of N_1 by the assumption, $Im(1-\alpha)$ is a direct summand of M. On the other hand, $Im(1-\alpha)$ is a dense submodule of M by [7], Theorem 2 and hence, $M = Im(1-\alpha)$. Therefore, $f-\alpha$ is an automorphism of N_1 , which implies fJ'f = fJf. Hence, N_1 has the exchange property by the theorem. The remaining part of the corollary is immediate from the above. In Theorem 4 below, we shall show the converse of Corollary in a special case.

Remark 2.[6], Proposition 10 and [9], Theorem I are special cases of Corollary I.

It is shown in [8], Remark in p. 52 that the exchange property does not imply the locally semi-T-nilpotency. In a special case we have

PROPOSITION 3. Let $\{M_i\}^{\infty}$, be a set of completely indecomposable modules such that M_i is monomorphic, but not isomorphic to M_{i+1} (cf. [6], p. 340 and [8], Corollary 3). 1) Let $M = \sum_{i=1}^{\infty} \oplus M_i = N_1 \oplus N_2$. Then N_1 has the exchange property in M if and only if either N_1 or N_2 is a directsum of indecomposable modules $\{M_i^{\prime}\}$ which is a semi-T-nilpotent system, (in this case, a finite directsum of M_i^{\prime}). 2) We further assume that each M_i itself is a locally T-nilpotent system and $M = \Sigma \oplus M'_{\alpha}$; $M'_{\alpha} \approx M_i$ for some i and $M = N_1 \oplus N_2$. Then we have the same statement in 1).

Proof. 1) "If part" is clear from [8], Theorem 2. We assume that N_1 has the exchange property. Then N_i is in \mathscr{A} : say $N_i = \sum_{K \in J^i} \oplus T_k^i$, where $T_k^i \gtrsim M_m$ for some m. if J^i vere infjinte for i = 1, 2, we vould have a contradiction from the assumption and [8], Lemma 2. 2) We can prove it similarly to 1).

PROPOSITION 4. - Let $M = \sum_{I} \bigoplus M_{\alpha}$ and M_{α} be isomorphic to a completely indecomposable module M_{1} for all $\alpha \in I$. Let $M = N_{1} \oplus N_{2}$. Then N_{1} has the exchange property in M if and only if M itself is a locally T-nilpotent system or either N_{1} or N_{2} is isomorphic to a finite directsum of M_{1} . Proof. It is clear from [8], Lemma 2.

COROLLARY. - Let P be a completely indecomposable and projective module and $M = \sum_{I} \bigoplus P_{\alpha}$; $P_{\alpha} \approx P$. Let $M = N_{1} \bigoplus N_{2}$. Then N_{1} has the exchange property in M if and only if either N_{1} or N_{2} is semi-perfect or equivalentely $J(N_{2})$ is small in N_{T} for i = 1 or 2.

Proof. It is clear from Proposition 4 and [7], Theorem 7.

4. MODULES WITH ZERO SINGULAR SUBMODULES.

In this section, we study Matlis' problem and give simpler proofs of slightly generalized results of [9], Theorems 2 and 3.

Let N be an R-module. We denote the singular submodule of N by Z(N), namely $Z(N) = \{n | \in N, (o:n) \text{ is large in } R\}$. The following lemma is well known and essential in this section.

LEMMA. - Let $\{N_{\alpha}\}_{I}$ be a set of indecomposable injective modules. If $Z(N_{\alpha},) = 0$ any homomorphism of N_{α} to N_{α} , is either isomorphic or zero. Especially, if $Z(N_{\alpha}) = 0$ for all $\alpha \in I$, $\{N_{\alpha}\}$ is a locally T-nilpotent system.

Let *M* be in \mathcal{A} and $M = N_1 \oplus N_2$. Then we note that N_1 always contains direct summands which are finite directsums of indecomposable modules (cf. [6], Corollary 1 in p. 334).

PROPOSITION 5. – Let M be in \mathcal{A} and $M = N_1 \oplus N_2$. We assume that for any decomposable direct summand T_1, T_2 of N_1 non-zero elements in $\operatorname{Hom}_R(T_1, T_2)$ are always isomorphic. Then N_i is in \mathcal{A} for i = 1, 2. Proof. Let $\Sigma \oplus T_{\beta}$ be a dense submodule of N_1 , where T_{β} 's are indecomposable. Every T_{β} is a direct summand of N_1 by [6], Proposition 2. Hence $\{T_{\beta}\}_J$ is a locally T-nilpotent system by the assumption. Therefore, $N_1 = \sum_J \oplus T_{\beta}$ and N_2 is in \mathcal{A} by Remark 1, [7], Proposition 2 and [8], Theorem 2.

COROLLARY. - ([16], Theorem 4).Let $\{M_{\alpha}\}_{I}$ be a family of indecomposable injective modules and $M = \sum_{I} \oplus M_{\alpha}$. If $M = N_{I} \oplus N_{2}$ and $Z(N_{I}) = 0$, then N_{i} is in \mathcal{A} for i = 1, 2 (cf. [9], Theorem 3).

Proof. It is clear from Lemma and Proposition 5.

THEOREM 4. - Let $\{E_{\alpha}\}_{I}$ be a family of injective and indecomposable modules and $E = \sum_{I} \oplus E_{\alpha}$. Then the following statements are equivalent. 1) $\{E_{\alpha}\}_{I}$ is a locally semi-T-nilpotent system 2) Any extension module M, in A, of E contains E as a direct summand 3) There are no proper and essential extensions, in A, of E and 4) Im g is a direct summand of E for any monomorphism g in S_{E} .

Proof. 4) \longrightarrow 1) is proved by Theorem 1 and Corollary 1 to Theorem 3. 1) \longrightarrow 4) by the assumption and Theorem 1 Im $g = \sum_{K} \oplus E_{\beta}$; $E'_{\beta} \approx E_{\alpha}$ for some α . Since E'_{β} is injective, Im g is a finitely direct summand of M. On the other hand, $\{E'_{\beta}\}_{K}$ is a locally semi-T-nilpotent system by Theorem 1. Hence, Im g is a direct summand of M from Remark 1. 1) \longrightarrow 2) is clear from Theorem 1. 2) \longrightarrow 3) is trivial. 3) \longrightarrow 1) We assume that $\{E_{\alpha}\}_{I}$ is not locally semi-T-nilpotent. Then we have a sub-family $\{E_i\}_{1}^{\infty}$ of $\{E_{\alpha}\}_{I}$ such that there exist non-isomorphisms $f_i:E_i \longrightarrow E_{i+1}$ and an element x in E with a property : $f_n f_{n-1} \cdots f_1(x) \neq 0$ for all n. We note Ker $f_i \neq 0$ for all i, since E_i is injective an indecomposable. Put $E'_i = \{x_i + f_i(x_i) | \in E_i \oplus E_{i+1}\} \in \sum_{l=1}^{\infty} \oplus E_j$ and $E = \sum_{l=1}^{n} \oplus E_j \oplus E_o$. Then $E_i \cap (\sum_{j=1}^{n} \oplus E'_j) \geq \text{Ker } f_i \neq 0$. Hence, $\sum_{j=1}^{n} \oplus E'_j \oplus E_o$ is essential in E. It is clear $x \in E - (\sum_{j=1}^{n} \oplus E'_j \oplus E_o)$. Let E^* be an injective hull of E. Then we can extend an isomorphism ϕ of $\sum_{j=1}^{n} \oplus E'_j \oplus E_o$ onto E to a monomorphism of E^* . Hence $\phi(\sum_{j=1}^{n} \oplus E'_j \oplus E_o) = E \notin \phi(E) = \sum_{j=1}^{n} \oplus \phi(E_\alpha) \in \mathscr{A}$.

COROLLARY 1. – We assume further in Theorem 4 that all E_{α} are noetherian. Then we obtain all of 1) \sim 4) in Theorem 4.

Proof. Let E_1, E_2 and E_3 be injective, indecomposable and noetherian modules, and $f_i: E_i \longrightarrow E_{i+1}$ non-isomorphisme. Then Ker $f_i \neq 0$ and Im $f_1 \cap \text{Ker } f_2 \neq 0$ if $f_1 \neq 0$, since E_2 is uniform. Hence, Ker $f_1 \subseteq \text{Ker } f_2 f_1$ if $f_1 \neq 0$. Therefore, $\{E_{\alpha}\}_T$ is a T-nilpotent system.

COROLLARY 2. Let M be in \mathcal{A} and L a submodule of M. We assume that Z(L) = 0and L is a direct sum of injective modules. Then L is a direct summand of M (cf. [9], Theorem 2).

Proof. Since every injective submodule of M is in \mathscr{A} by Corollary to Theorem 3. L is a direct summand of M by Lemma and Theorem 4.

Remark 3. Let $\{E_{\alpha}\}_{T}$ be a family of indecomposable, injective modules. In

general, $\{E_{\alpha}\}_{I}$ is not locally semi-T-nilpotent and hence, $\sum_{I} \oplus E_{\alpha}$ is not quasiinjective. Furthermore, even if all E_{α} is not injective. If either $E = \sum_{I} \oplus E_{\alpha}$ is (quasi-)injective or Z(E) = 0, $\{E_{\alpha}\}_{I}$ is a locally semi-T-nilpotent system. However, the converse is not true as follows. Let K be a commutative, local Frobenius ring with $Z(K) \neq 0, M_{2I} = \sum_{i=1}^{\infty} \oplus K_{i}$; $K_{i} \approx K, M_{32} = \operatorname{Hom}_{K} (M_{2I}, K) = \pi K_{i}$ and $M_{3I} = K$. Then

$$R = \begin{pmatrix} K & O \\ M_{21} & K \\ M_{31} & M_{32} & K \end{pmatrix} = T(K_{s}K_{s}K_{j}M_{ij})$$

is a ring (cf. [5], p. 23). Put $e_1 = T(1,0,0;0)$ and $e_3 = T(0,0,1;0)$, then $\operatorname{Hom}_{K}(Re_1,K) \approx e_3R$ is *R*-injective. Since $e_3Re_3 = K$ is local, e_3R is indecomposable and e_3R itself is a T-nilpotent system. It is clear that $Z(e_3R) \supseteq$ $(Z(K),0,0) \neq 0$. Put $S_i = (M_{31}, \prod_{j=i}^{m} K_j, K) \subseteq e_3R$. Then $(0:S_1)_R \subseteq (0:S_j)_R$ if i < j. Hence, $\sum_{i=1}^{\infty} \oplus e_3R$ is not injective by [3]. However, I do not know whether $\sum_{i=1}^{\infty} \oplus e_3R$ is quasi-injective or not. If we can construct a self-injective and perfect, but not Σ -injective ring S (or a self-injective and local, but not Σ -injective ring with Z(S) = 0), then $\Sigma \oplus S$ is not quasi-injective but $\{S\}_I$ is a T-nil-I

REFERENCES.

- [1] G. AZUMAYA, Correction and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), p. 117-124.
- [2] P. CRAWLY and B. JONNSON, Refinements for infinite direct decomposition of algebraic systems, Pacific J. Math. 14 (1964), p. 797-855.

- [3] C. FAITH, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191.
- [4] L. FUCHS, On quasi-injective modules, Annali della Scuola Norm. Sup. Pisa, 23 (1969), p. 541-546.
- [5] M. HARADA, QF-3 and semi-primary PP-rings II, Osaka J. Math. 3 (1966) p. 21-27.
- [6] M. HARADA and Y. SAI, On categories of indecomposable modules I, ibid 7 (1970), p. 323-344.
- [7] M. HARADA, On aategories of indecomposable modules II, ibid. 8 (1971) p. 309-321.
- [8] M. HARADA, Supplementary remarks on categories of indecomposable modules, ibid. 9 (1972), p. 49-55.
- [9] U.S. KAHLON, Problem of Krull-Schmidt-Remak -Azumaya-Matlis, J. Indian Math. Soc. 35 (1971), p. 255-261.
- [10] H. KANBARA, Note on Krull-Remak-Schmidt-Azumaya's theorem, Osaka J. Math. 9 (1972).
- [11] I. KAPLANSKY, Projective modules, Ann of Math. 68 (1958), p. 372-377.
- [12] E. MARES, Semi-perfect modules, Math. Z. 83 (1963), p. 347-360.
- [13] E. MATLIS, Injective modules over noetherian rings, Pacific J. Math. 8 (1958), p. 511-528.
- [14] R.B. WARFIELD Jr, A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), p. 460-465.
- [15] R.B. WARFIELD Jr, Decomposition of injective modules, Pacific J. Math. 31 (1969), p. 263-276.
- [16] K. YAMAGATA, Non-singular rings and Matlis' problem, Sci. Rep. Tokyo Kyoiku Daigaku 11 (1972), p. 186-192.

Manabu HARADA OSAKA CITY UNIVERSITY Department of mathematics.