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NOTE ON CATEGORIES OF INDECOMPOSABLE MODULES 

by Manabu HARADA 

Let E be a ring with identity and M a unitary right ^-module wich is a 

directsum of indecomposable, infective modules. E. Matlis [ 13 ] posed the following 

question : for any direct summand L of M9 is L also a directsum of indecomposable 

injective modules ? Recently, U.S. Kahlon [9] and K. Yamagata [16J studied this 

problem under an assumption that the singular submodule of L is equal to zero. 

In this short note, we shall show that if the singular submodule of L is 

equal to zero, then the affirmative answer of Matlis' problem is an immediate 

consequence from [6] and [id]. Especially, in the section U, we shall give simpler 

proofs of generalized Kahlon1 results [ 9 ] . In sections 2 and 3 , ve shall give some 

supplementary results of [7] and [8] . 

I. DEFINITIONS 

Let R be a ring with identity. We assume that all modules in this note are 

unitary right tf-modules. Let M be an i?-module. If EndD(M) = S is a local ring 

(the Jacobson radical is a unique maximal ideal among left an right ideals), M 

is called completely indecomposable. 

Let be the induced full sub-category from all completely indecomposable 

modules in the category of right ^-modules iM^y namely every object in 0$ is a 

direct sum of some family of {M } (see [ 6 ] , § 3 ) . Let MJ , Af2 be objects in and 
a 1 1 2 
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Note on categories of indecomposable modules 

is non-isomorphic for all B e l 1 , $f€l°* where i^9 : M^f + M is the injection 

and Q: wf is the projection}. Then 3 1 is an ideal inland 1 

P p 

is a completely reducible C^-abelian category by [6] 9 Theorem 7 . If 

we denote [M1^1] ^ 3 'by J * ' 

Let A and / be an object and a morphism in ̂ , respectively. By A and 

f we denote the residue classes of A and / ind/$ f . Let 5 be in 

and £ the inclusion of B to J4. If t is isomorphic in we say J is a 

dense submodule of 4 (see [T] ,p. 3 1 0 - 3 1 1 ) . We assume A = C © Z) as tf-modules 

and let s the projection of A onto C. By C we denote Im £ in o4/ J 1 , even 

though C is not in o/ . Next, we assume that A ^ Bare i n ^ and B = £ © as 

i?-modules. If E $ T , is a direct summand of 4 for any finite subset Kf 

of K, then we say that B is a finitely direct summand of 4 (with respect to 

the decomposition I $ ^ clear that every directsum of injective 
K 

modules is a finitely direct summand of its extension module. 

We summarize here definitions of the exchange property given in [6] , 

[ T l , [ 8 ] and [ 10 ] -

Let {M } T and {ND} T be sets of completely indecomposable modules. We 
Ot 1 p d 

put M = I ® M we recall Condition II given in [~6] , § 3 . 
I a 

II (Take out). For any subset If of I and any other decomposition 

M = I « there exists a subset ^ ( y ) ^ j r J of i^^j such that A f ^ r t f ^ 

for all v elf and M = I $ N.f s $ I 9 M . 

II I (Put in). For the same assumption as above, there exists a subset 

where <f> and ^ are one-to-ene mappings of 19 into J. 

1 2 



Note on categories of indecomposable modules 

If we replace the subset I9 by I-I', then II and II ? are equivalent by 

Azumaya1 s theorem [l] . Furthermore, Azumaya [ l ] showed that II and II 1 are 

satisfied for any finite subset J' of J. 

We remark that if a given decomposition M = I © satisfies II or II 1 , 

then any decomposition M = £ © Nr> does the same property. Because, let 
J ^ 

M = E © be another decomposition with indecomposable. Then there exists 
K 

an automorphism cr of M such that 0(No) = W w / 0 x by Azumaya's theorem, where % 
p M P J 

is a one-to-one mapping of J to J. We apply II or II 1 for the decompositions 

M = I 9 M„,Q, = E © afPJ. Then we have M = I C g(2\, J © £ © A ' W Q N 
*f&> ^ 6 y e J t <J) (y) g g ^ j , *(B) 

or M =(kJ'T99M1tfo.Q £ © o(TJ.Kence9M=o-1(M)= 9T.f £ ©AT

Q or M= 2 ©A* 

We note II and II 1 are independent for fixed two decompositions 

M - £ © M = Z Q ND and a given subset I' of I. For example, we assume there 
I A J 8 

exist non-isomorphic monomorphisms /. of to for all ie Kcl. We put 

M'. = {m.+f.(m.) I e MT « M. , m.€ M.} . Then M - Mi © M c © Ml © ... © M -

W- © W¿ © A f 7 © W' © .. . © M 3 where A? - E © № . It is clear that 1 2 3 4 o> o a € j ^ a 
tf' - ifj © © © has the property II for the second decomposition in 

the above. However, by the proof of [6] , Lemma 9 we know that if A7 had the 

property II 1, then {/.} would be a locally semi-T-nilpotent system (see 

(see [7 ] , § 1 for the definition). Similarly, A7 - M © M7 © ... © M has the 
1 0 o 

property II 1 for the first decomposition, however if AT had the property II, 

then {f.} would be a locally semi-T-nilpotent system. 
Is 

We say that a direct summand T of M has the exchange property in M if 

for any decomposition M = I © (Ug ere not necessarily indecomposable), 
J 
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Note on categories of indecomposable modules 

M = T © E © U£ and 2 for all 6 J. Especially, if T has the above pro

perty, whenever all are indecomposable , we say T has the exchange property 

in M for indecomposable modules. We refer the reader for terminologies to [6] 

and [7] . 

2 . DIRECT SUMMAND S 

First we recall somme of main theorems in [7] and [10J . 

THEOREM 1 ( [ 7 ] , [10] ) . - Let M be a direct sum of a family of completely 

indecomposable modules ^^j* Then the following statements are equi

valent. 

DM satisfies the property of "take out" 

2) Every direct summand of M has the exchange property in M 

Z) Every direct summand of M has the exchange property in M for inde

composable modules 

4) [Mq^J ̂ 8 & locally semi-T^nilpotent system 

5) 9 9 is the Jacobson radical 3 of S - End D(W 

6) Every finitely direct swrmand Mf of M such that Hf - I ® T is a 
K a 

direct surrmand of M for any [k] and any family {T^} 

6f) 6) is valid for any K with K = and 

7) 6') is valid whenever all are completely indecomposable^ 

8) S/ is a regular ring (and self infective as a one sided module) 

and every idempotents in S/2- are lifted to where \y\ is the 

cardinal number of K. 

14 



Note on categories of indecomposable modules 

Proof. 2)<—* k) is proved by [8] , Corollary to Proposition 1 . We note 

in § 1. 2 ) — » 3) —> 1) is clear- U)«—»5) is proved by [ 1 0 ] ,Theorem. 

6) * 6 ?)—> 7 ) is trivial. 7 ) >*0. Let {Af be any countable sub-family 
OLt 1 

of (Af } r and let { / . } T be a family of non-isomorphisms /. : M. = M . -* M.-= 

M Put A f ' - ? « »! , where M'. - {m .+f. (m J l e A f . m.eM.} . Since 
n "+2 
Z $ M'. Q M = I ® M. 3 Mf is a. finitely direct summand of M. Hence , M' 

oo 
is direct summand of Z ® M. f=Af Jc M by T). We know from [8] , Theorem 2 

2 I* o 

that Af ' is a dense submodule of A f^ . Therefore, A f ' - M by [ 6 ] , lemma 7 , which 

means that { A f ^ } ~ is a locally semi-T-nilpotent (cf. [ 6 ] , the proof of Lemma 9 ) . 

h) * 6 ) . Let Mf = I e T be a finitely direct summand of M. We may assume 
K a 

from 2) that all T^ are indecomposable. Now, we consider the above modules in 

&l /3 ' . Let i be the inclusion of M9 to W. Since Mf is a finitely direct 

summand of M and $f/# 1 is a C^-abelian, i is the inclusion of Mr into Af and 

«' - I ® ? . Then Mf is a coretract of M by [6] , Theorem 1. {T } is a 

locally semi-T-nilpotent system. Therefore, t is a coretract of Af by 5) 

(cf. [ 7 ] , the proof of Proposition 2 ) . 5 )*—*8) It is clear from [ 6 ] , Lemma 7 

and 13 Corollary to Lemma 6 . 

Remark 1. In the above proof of k) > 6 ) we only make use of a fact that 

{2^}^ is a locally semi-T-nilpotent system. 

Next, we study a general type of Matlis1 problem. The following theorem 

combines [10] and [lU]. 

THEOREM 2 . - Let M be a directsum of completely indecomposable modules ; 

My= Z $ and iMg}j the sub-family of countably generated R-modules 

of {^a^j • assume {M^}is a locally semi-T-nilpotent system. Then 

every direct uurrmand of M is in c$. 

15 



Note on categories of indecomposable modules 

Proof. Let M = § N„ and K - I-J. Each N. contains a dense submodule 1 2 % 

T. = Z e Mf . such that M ̂  T- § T 0 by [ 6 ] , Theorem 1 for i = 1 , 2 , where 
t T yt 1 6 1 J 

Af'. is isomorphic to some M ; a 5 J. We divide L. into two partitions yt a г 
L. - J . UK. such that for Y . £ E 7 . (resp. X.) Af'. is isomorphic to some M ;cl{J t t t г г г Y г ^ a J 

(resp. K) . Since {M̂ , is locally semi-T-nilpotent, T\ = Z $ Mf^ is a 
Is Is 

direct summand of N. by Remark 1 and \j\ » proposition 2 , say A7 .̂ - T\ $ N\ 
Is Is 1/ 1, 

Furthermore, © h a s t t i e exchange property in Af "by Theorem 2 . 

Hence, N' ® if! ̂  Z O q $ E $ A7 . We consider those modules in 5//$ 1 . 
J9 KF ^ 

Then M = T' * T' ® Z Q Mf . & Z 0 M' . .On the other hand, Af - ffl $ A n ^ 2 T y*̂  _ yt 1 2 
J I — - J o = T' 0 if' © T' © A" - ?! ® f' I I C M9 $ E H ' J where tf' Kence i i ^ ^ i ^ K 9 ^ o o 

Z © . • Z %M'.~l C Af' C Z e Af' . Since all M' . in the left side are 
J 2 ^ J 2

 y % J' B K' Y ^ 

countably generated, K 9 = 0 by [ 6 ] , Theorem 7 . Therefore, is in si by 

or f 7 ] 5 Proposition 3- We have completed the proof. 

In Theorem 2 if W is injective9NN^ is in gtf by [k] , [9] or [ 1 5 ] without 

any assumption. Similarly 

PROPOSITION 1. - Let M be in $1 and N a direct swnmand of Af. If N is pro

jective j N is in $ . 

Proof. By [ 1 1 ] , Theorem 1 , N is a directsum of countably generated tf-submodules 

P . Furthermore, P is in by [ 7 ] , Proposition 3 . Hence, N is in 
ot ot 

The following corollary was given with an assumption that J(P) is small in P 

by [ 1 2 ] , Theorem 5 . 5 and [ 7 ] , Proposition 5 . 
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Note on categories of indecomposable modules 

COROLLARY. - Let M be in of and R-projective. Then every direct summand P 

of M is in ¿4 . 

It is also clear. 

We give a property of dense submodules. 

PROPOSITION 2 . - Let M be in ¿4 and N a direct summand of M. Then there 

exists a submodule Nf of satisfying the following properties : 

1) N' is in cfl, 2) Nf is a finitely direct summand of N and Z) If T = 

I $ T is finitely direct summand of N, T is isomorphic to a direct 
J a 

summand of Nf, where T } s are indecomposable. 

Especially, every countable generated R-submodule of N is isomorphic 

to a submodule of N9. Every submodule N" of N satisfying 1) and 2) is 

isomorphic to a direct summand of any dense submodule of A7. 

Proof. Let A7' be a dense submodule of A7. Then A7' satisfies 1) and 2) by [?] , 

Proposition 2 . Let e and e^ be projections of M to A7 and T^ with respect to 

given decompositions. Then ee^ = e^ for all a 6 J. We consider those modules 

in c4 / ^ . Since f is a finitely direct summand of N( CM), T = I © T c Im e = 

T CL 

_ tf 

A7'. Hence, T is isomorphic to a direct summand of A7' by [£] , Theorem 7 . We 

easily see that for two finitely generated submodules T^oT^ in Ar, ve can 

find a direct summand T\ of A7 such that T\ *T . >T' "> T' and T\ is a finite 

directsum of indecomposable modules for i = 1,2 (cf. [?] , the proof of 

Proposition 3 ) . Since T£ ? T| , we can find a monomorphism cf Tj to A7' which 

is an extension of a given monomorphism of Tg to Nf by [ 6 ] , Theorem 7* 

1 7 



Note on categories of indecomposable modules 

Hence, every countably generated #-submodule of N is isomorphic to a submodule 

of Nf by the standard argument. Let Nft be a submodule satisfying 1) and 2). 

Then NtfcNf. Hence, the last statement is clear from [6], theorem 7. 

3. EXCHANGE PROPERTY 

It seems to the author that the difficulty of the exchange property in 

Af comes from the following facts. Let Af be in S4 and M = $ • A 7^ as 

i?-modules. It is well known from [2] that if and have the exchange 

property in Af , then so is ® however the converse is not true. Fur

thermore, even if neither Nj nor has the exchange property in Af , it is 

possible that N^Q does. 

We note that if a direct summand L of M has the exchange property, then 

L is in orf . The following theorem is a slight generalization of some parts 

in Theorem 1 . 

THEOREM 3. - Let M be in St and M = ® N^. Let f be the projection of M 

Onto Nj. Then f$ ff = fj f if and only if every direct svomand of 

has the exchange property in M. In the case also has the exchange 

property in M, where $ is the ideal defined in §1 and p is the Jacob-

son radical of S - Endp(W. 

Proof. "Only if" . Let M = Z « and M£ 1 s are completely indecomposable. 

We can find a subset J of I such that Mj = I 9 M Jm f in &f/jf* by [6] , 
J 

Iheorem 7. Let e be the projection of Af to Mj . Then fS/f % eS/e $ \ 

18 



Note on categories on indecomposable modules 

Hence, there exist a^eSf, b G fSe such that ba E f (mod^ 1). Put f-ba = neZ'j 

then nsf$'f = fj)f3 which tis the radical of = EndR(N2). Hence, ba 

is an automorphism of fS as an S-module. Therefore, eS = f^S Q f^S and 

/ 7 5 S fS, f9S = Ker b and f2. = fSince b induces eS/e <t fS/f $ 

f2S = f2 $' Q < J ' . Hence, f2 = 0 by [l] , Theorem 1 or [ 6 ] , Lemma 7 and 

eS Z fS j which implies A% ̂  M T. Therefore, {M } T is a locally semi-T-nilpotent 
I d (It) 

system by Theorem 1. Thus, we have poved "only if" from [ 8 ] , Corollary to 

Theorem 2 . "if". = £ 0 and {M^} is a locally semi-T-nilpotent system 

by [ 8 ] , Corollary to Theorem 2 . Hence, f $ 'f = f$ f ^y Theorem 1 and [6] , 

Lemma 5 . The remaining part is clear from [ 8 ] , Theorem 2 . 

COROLLARY . - Let M and be as above. If for every monomorphism g in . 

Im g is a direct summand of N (i.e. qS„ = eS„ . e = e), then A7
0 and 

every direct summand of have the exchange property in M. eEspecially, 

if is quasi-infective, has the exchange property in M for i = 1,2, 

(of. \4\). 

Proof. Let M - 9 11 ̂ and f be the projection of M to A%. We take any 

element a in f$'f. Then Ker (1-a) - 0 by [l], Theorem 2 and Im (1-a) = 

Im((l-a)\N2) 9 A/g. Since Im ((l-a)\N2) is a direct summand of A^ by the 

assumption, Jm( 1-a) is a direct summand of M. On the other hand, Im (1-a) is 

a dense submodule of M by [ 7 ] , Theorem 2 and hence, M = Im (1-a). Therefore, 

f-a is an automorphism of A^ 3 which implies f #'f = f ̂ H e n c e , has the 

exchange property by the theorem. The remaining part of the corollary is 

immediate from the above. 

19 



Note on categories of indecomposable modules 

In Theorem k below, we shall show the converse of Corollary in a special 

case. 

Remark 2 . [ 6 ] , Proposition 10 and [ 9 [ 9 Theorem I are special cases of 

Corollary I. 

It is shown in [ 8 ] , Remark in p. 52 that the exchange property does not 

imply the locally semi-T-nilpotency. In a special case we have 

PROPOSITION 3 . Let {M.}°°, be a set of completely indecomposable modules such 

that is monomorphic3 but not isomorphic to M^+j ^cf9 P* ^^0 and 

[8]s Corollary Z). 1) Let Af - ? 0 AT. = ^ 0 N£. Then N2 has the exchange 

property in M if and only if either or N^ is a directsum of indecom

posable modules {Ml} which is a semi-T-nilpotent system, fin this case, 

a finite directsum of M\). 2) We further assume that each AT. itself is 

a locally T-nilpotent system and M=ZQMfjM'mM. for some i and 
Ot 0» *v 

M = 6 Then we have the same statement in 1). 

Proof. 1) "If part" is clear from [8] , Theorem 2 . We assume that N has the 

exchange property. Then N. is in &t : say N. = I . € t\ > where t\ ̂  M 

i 

for some m. if J vere infinite for i = 1923 we vould have a contradiction 

from the assumption and [ 8 ] , Lemma 2 . 2) We can prove it similarly to 1 ) . 

PROPOSITION 1*. - Let M = I ® and be isomorphic to a completely inde

composable module for all a el. Let M - Nj® N^. Then N^ has the 

exchange property in M if and only if M itself is a locally T-nilpotent 

system or either N^ or N^ is isomorphic to a finite directsum of M^. 

20 



Note on categories of indecomposable modules 

Proof. It is clear from f8] , Lemma 2 . 

COROLLARY. - Let P be a completely indecomposable and projective module and 

M = I © P ; P ^ P. Let M = N- ® N0. Then N has the exchange property 
j a a l u i 

in M if and only if either or is semi-perfect or equivalentely 

J(N.) is small in N- for i = 1 or 2. t I " 

Proof. It is clear from Proposition k and [t], Theorem 7 . 

U. MODULES WITH ZERO SINGULAR SUBMODULES. 

In this section, we study Matlis1 problem and give simpler proofs of 

slightly generalized results of \p\, Theorems 2 and 3. 

Let N be an i?-module. We denote the singular submodule of N by Z(#), 

namely Z(N) = {njetf, (o:n) is large in R]. The following lemma is well known 

and essential in this section. 

LEMMA. - Let be a set of indecomposable injective modules. If Z(H^) = 0 

any homomorphism of to N % is either isomorphic or zero. Especially* 

if ZfN^) - 0 for all aelj { N^} is a locally T-nilpotent system. 

Let M be in 9! and M = $ . Then we note that always contains 

direct summands which are finite direct sums of indecomposable modules 

(cf. [6], Corollary 1 in p. 33*0. 

PROPOSITION 5 . - Let M be in cfl and M = it̂ . We assume that for any decom

posable direct surrmand T^Tg of Nj non-zero elements in Hom^/T^T^J are 

always isomorphic. Then is in d for i = 1,2. 

21 



Note on categories of indecomposable modules 

Proof, Let Z $ TQ be a dense submodule of ff7, where TQ

 1 s are indecomposable 

Every is a direct summand of by [ 6 ] , Proposition 2 . Hence is a 

locally T-nilpotent system by the assumption. Therefore, i\L = T. 0 TQ and ff0 

J ° 2 

is i n ^ b y Remark 1 , [ 7 ] , Proposition 2 and [ 8 ] , Theorem 2 . 

COROLLARY. - ( [ 1 6 ] , Theorem k).Let iM *}j be a family of indecomposable infec

tive modules and M = I « M . If M = N. e N0 and Z(NJ - 03 then N. is 

in erf for i = 132 (of. \jj\9 Theorem 3). 

Proof. It is clear from Lemma and Proposition 5 . 

THEOREM k. - Let {S"a}j be a family of infective and indecomposable modules 

and E = £ $ E . Then the following statements are equivalent. 

1) {Eg)j 1$ a locally semi-T-nilpotent system 

2) Any extension module Af, in Pf> of E contains E as a direct summand 

3) There are no proper and essential extensions, in ¿4\ of E and 

4) Im g is a direct sumnand of E for any monomorphism g in S-. 

Proof, k)*—* 1) is proved by Theorem 1 and Corollary 1 to Theorem 3 . 1 ) — * k) 

by the assumption and Theorem 1 Im g = E ® EQ ; El *t E for some a. Since 
^ P P ot 

£g is injective, Im g is a finitely direct summand of M. On the other hand, 

{Fg}^ is a locally semi-T-nilpotent system by Theorem 1. Hence, Im g is a 

direct summand of M from Remark 1. 1 ) — * 2 ) is clear from Theorem 1 . 2) ^ 3 ) 

is trivial. 3 ) — > 1) We assume that ^ a ^ j is
 n c r t locally semi-T-nilpotent. 

22 



Note on categories of indecomposable modules 

Then we have a sub-family { E o f {E } T such that there exist non-isomor-

phisms f£:%£—>^i+l a n d a n e ^ e i n e i r t x ^ n ^ with a property : fnfn^i***f^x^ ® 

for all n. We note Ker f-^0 for all i 3 since E. is infective an indecom-

posable. Put El = {x. + f.(x.)\€E. $ E. J £ ? $ E . and E = I A E . • E . 

Then 2?. A f I « E'J=> Ker f. ̂  0. Hence, E $ I f is essential in E. It is 
^ Q 3 Ji Q 3 0 

clear x€E-( Z « Er. $ E ). Let E* be an injective hull cf E. Then we can 

extend an isomorphism <() of E© E'. © E onto E to a monomorphism of E*. Hence 
3 3 0 

I 9 Ef. 9 E ) = E £ <t>(E) = Z ® $(E ) £ &t• 
j J o * ^ I a 

COROLLARY 1. - We assume further in Theorem 4 that all E^ are noetherian. 

Then we obtain all of 1) ̂  4) in Theorem 4. 

Proof. Let %2>^2 ^3 ̂ e injec^i^* indecomposable and noetherian modules, 

and fy.E.—non-isomorphisme. Then Ker f.fO and Im /- f> Ker f9 # 0 if 

f1 4 0 , since E2 is uniform. Hence, Ker fj c Ker f2f^ it fj j 0. Therefore, 

{E^}j is a T-nilpotent system. 

COROLLARY 2 . Let M be in &t and L a submodule of M. We assume that Z(L) = 0 

and L is a direotsum of infective modules. Then L is a direct summand 

of M (cf. [9] , Theorem 2 ) . 

Proof. Since every injective submodule of M is in by Corollary to 

Theorem 3 . L is a direct summand of M by Lemma and Theorem U. 

Remark 3 . Let {E^}^ be a family of indecomposable, injective modules. In 

2 3 



Note on categories of indecomposable modules 

general, ^ a ^ j is n o ^ locally semi-T-nilpotent and hence, E $ E^ is not quasi-* 

injective. Furthermore, even if all E\ is not infective. If either E = E€) E 
a j a 

is (quasi-)injective or Z{E) = 0 , (E

a^j is & locally semi-T-nilpotent system. 

However, the converse is not true as follows. Let if be a commutative, local 

Frobenius ring with Z(K) ± 0 , M O 7 = E ®K. \K. >M70 = Horn (V2,K) =irK. 

and M ^ = K. Then 

(K °\ 

M31 M32K' 

is a ring (cf. [ 5 ] , p. 2 3 ) . Put ^ = T ( 1 , O , O ; 0 ) and e^ = T(o,o , 1 ; 0 ) , then 

Eom^iRe^K) ¿2 e^R is #-injective. Since e^Re^ - K is local, e^R is indecompo

sable and e^R itself is a T-nilpotent system. It is clear that Z(e^R)^ 

(Z(A - ) ,0 ,0 ) i 0 . Put Si = (M^, UK^K)Ce3R. Then ( 0 : 5 ^ £ ( C h S ^ if i<j. 

Hence, ? © eJ? is not infective by [ 3 ] . However, I do not know whether ?©g R 
1 1 3 

is quasi-injective or not. If we can construct a self-inject ive and perfect, 

but not E-injective ring 5 (or a self-inject ive and local, but not E-injective 

ring with Z(5) = 0 ) , then E © 5 is not quasi-injective but {S)r is a T-nil-
I 1 

potent system. 
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