G. LASSNER

O^{*}-Topologies on the Test Function Algebra

Publications du Département de Mathématiques de Lyon, 1975, tome 12, fascicule 1 , p. 25-38
http://www.numdam.org/item?id=PDML_1975__12_1_25_0
© Université de Lyon, 1975, tous droits réservés.
L'accès aux archives de la série «Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

0* - TOPOLOGIES ON THE TEST FUNCTION ALGEBRA

G. LASSNER

1. INTRODUCTION

This paper deals with C^{*}-like topologies on the test function algebra \because, the tensor algebra over the Schwartz space \because. These topologies are connected with continuous representations of this algebra.

If R is a -algebra and a pre-Hilbert space, then a representation $a \mapsto A(a)$ of R in \nexists is a homomorphism of R into End \mathscr{A}, such that $\langle\phi, A(a) \psi\rangle=\left\langle A\left(a^{*}\right) \phi, \psi\right\rangle$ for all $\phi, \psi \in \mathscr{D}$.

For a representation of a Banach k-algebra R all operators $A(a)$ are automatically bounded and the representation is uniformly continuous. In fact, for $\phi e \mathbb{D}, f(a)=\langle\phi, A(a) \phi\rangle$ is a positive functional on P and therefore [1] :

$$
\begin{aligned}
\|A(a) \phi\|^{2} & =\left\langle\phi, A\left(a^{*} a\right) \phi\right\rangle=f\left(a^{*} a\right)=f(1) \| a^{*} a| | \\
& \leqslant\|\phi\|^{2}\|a\|^{2},
\end{aligned}
$$

which implies $|A(a)!| \leqslant||a||$. In comparison with this for general topological algebras, one has to face some new problems mainly connected with topologies in algebras of unbounded operators. With this question we deal first in the next section
2. TCPOLOGIES $\therefore \therefore 0 F^{*}$-ALGEBRAS

For a pre-Hilbert space $J^{+}(T)$ we denote the set of all operators A. e End \hat{i} for which there exist an operator $A^{+} \in$ End \mathscr{y} satisfying
 with the involution $A \rightarrow A^{+}$. AA-subalgebra $-\mathscr{t}$ of $\varphi^{+}(\Omega)$ containing the identity I will be called an $0 F^{\star}$-aigebra. $\mathcal{N}^{+}(9)$ is the maximal O_{P}^{*}-algebra ever 2.

A subset $H C\{$ we call i-icunded if sup $\|A C\|<\infty$ for all operators $A \in \mathcal{A}$. If the $O p^{\wedge}$-algebra contains bounded operators only, then the f-bounded sets are preciscly the bounded sets in \because.

Analogously to the bounded vase we can also on Op*-algebra of unbounded operators define different topologies related to the underlying pre-Hilbert space. . e regard four tofologies, defined by the following systems of serincras.

DEFINITION 2.1. -

$$
\sigma_{J} \text {, weak topology : }\left||A|_{\propto, \psi}=|\langle 0, A \psi\rangle| \text { sor aiI c, טє } D\right. \text {; }
$$

0 -topologies on the test function algebra

$\sigma^{\mathscr{D}}$, strong topology : $\|\mathrm{A}\|^{\phi}=\| \mathrm{A} \phi| |$ for $a l l \phi \in \boldsymbol{D}$;
$\tau_{D D}$, uniform topology: $\|A\|_{d H_{b}}=\sup _{\phi, \psi \in H_{6}}|\langle\phi, A \psi\rangle|$ for all it-bounded sets A ;

A-bounded sets H.
\$EN

On infinite-dimensional $O p^{*}$-algebras of bounded operators the weak topology is properly weaker than the strong topology and this is properly weaker than the uniform topology which in this case coincides with the quasiuniform topology and is equal to the usual norm-topology, i.e.

$$
\begin{equation*}
\sigma_{D} \lesssim \sigma^{D}<\tau_{D}=\tau^{D}=\text { norm-topology } \tag{2.1}
\end{equation*}
$$

For $0 p^{*}-a l g e b r a s$ of unbounded operators we have in general only the relation

$$
\sigma_{D} \leqslant\left\{\begin{array}{l}
\tau_{2} \tag{2.2}\\
\sigma^{0}
\end{array}\right\} \leqslant \tau^{2}
$$

and in consistency with the foregoing one many relations between these four topologies are possible [2]. For example the strong topology may be stronger than the uniform one, more precisely, the relation

$$
\begin{equation*}
\sigma_{D} \leqslant \tau_{D} \leqslant \sigma^{D}=\tau^{D} \tag{2.3}
\end{equation*}
$$

is possible, as we shall see in section 5 .

For a general theory of topological algebras of unbounded operators the uniform topology τ_{2} plays an important role as first was outlined in [3].

0^{2}-topologies on the test function algebra

DEFINITION 2.2. -

An $O p^{*}$-aigebra it $\left[\tau_{श}\right]$ equipped with the uniform topciogy τ_{g} we call $\tilde{0}^{*}-a l g e E r a$ and if it is complete 0^{*}-algeira. A tofological * -algebra R, which is algebraically and topologically isomorpicic $=0$ ar. 0^{*}-aigezraíresp. $\tilde{0}^{*}$-algebra we call $\mathrm{A} 0^{*}$-algebra'resp. $\mathrm{A} \hat{\mathrm{O}}^{*}$-aigebral.

The 0^{*}-algebras are generalizations of the C^{*}-algebras and the $A O^{n}$ algebras are generalizations of the B^{*}-algebras. It is an interesting problem to give an abstract characterization of an $A O^{x}$-algebra, like the property $\left\|a^{*} a| |=\right\| a \|^{2}$ of $a B^{*}$-algebra. For barrelled A-algebras this problem could be completely solved.

THEOREM 2.3 (Schmüdgen [4]). -
i) In ar. $\hat{A O}^{*}$-aigetra R tire cone $K=\operatorname{conv}\left\{a^{*} a ; a \in R\right\}$ is a norrai cne. ii) If ir a barrellez a -aigeira R with a unitz e tie sore k of fositive elemente is a ramal cne, ther. R is an AÖ*-aigekra.

3. CONTINUOUS REPRESENTATIONS

A representation of a x-algebra R is $a *$-homomorphism $a \rightarrow A(a)$ of R onto an Op-algebra $A=A(R)$.

DEFINITION 3.1. - A representation of a topological *-algebra R is sai̇i to be weakly (resf. strongly, uniformly, quasi-uniformly) continuous,
if the mapping a $\rightarrow A(a)$ of R onto of $i s$ continuous with respect to the weak (resp. strong, uniform, quasi-uniform) topology on At.

As we already remarked in the introduction, any representation of a Banach *-algebra is uniformly continuous. In general one has only results of the following type.

LEME 3.2. - If R is a barrelled *-algebra and a $\rightarrow \mathrm{A}(\mathrm{a})$ a weakly cortinuous representation, then this representation is quasi-uriformiy cortinuous and in consequence of (2.2) uniformly continuous also.

Proof. - Let $\|\cdot\| \|^{\boldsymbol{H}}$ be a seminorm of $\tau^{\mathscr{Q}}$ and $U=\left\{a \in R ;\|A(a)\|^{H} \leqslant 1\right\}$. U is an absorbing set and futher

$$
\begin{align*}
\mathrm{U} & =\int_{\phi \leq M}\{\mathrm{a} ; \| \mathrm{A}(\mathrm{a}) \phi| | \leqslant 1\} \tag{3.1}\\
& =\Gamma_{\phi \in \mathcal{H}} \Gamma_{\psi \leqslant \mathrm{S}}\{\mathrm{a} ;|<\psi, \mathrm{A}(\mathrm{a}) \phi>| \leqslant 1\},
\end{align*}
$$

where S is the unit sphere in \mathcal{D}. In consequence of the weak continuity of the representation the sets on the right-hand side on the last line of (3.1) are closed and absolutly convex. Therefore U is closed, absolutly convex and absorbing, i.e. a barrel. Hence U is a neighbourhood, Q.E.D.

LEMMA 3.3. - Let R be a barrelled $*$-algebra and $a \rightarrow A(a)$ a weakiy continuous representation. Then the bilinear mapping $a, b \forall A(a b \prime$ from R onto $A(R)\left[\tau_{\infty}\right]$ is jointly continuous.

Prooj. - Let 4 be an arbitrary A-bounded set, then
$\left||A(a b)| \|_{t}=\sup _{\phi, \psi=-46}\right|\langle\phi, A(a) A(b) \psi\rangle \mid$

$$
\leqslant \quad \sup _{0 \in \sqrt[H]{ }} \mid\left\|A\left(a^{*}\right) \phi\right\| \sup _{\psi \in \mathcal{H}_{6}}\|A(b) \psi\|=\left\|A\left(a^{*}\right)\right\|^{\mathcal{H}}\|A(b)\|^{H_{6}}
$$

In consequence of the foregoing lemma there is a seminorm $p($.$) of the topo-$ logy of R such that $\left\|A\left(a^{*}\right)\right\|^{H 6} \leqslant p(a)$ and $\|A(b)\|^{H^{k}} \leqslant p(b)$. Hence $\left\|\nabla_{A}(a b)\right\|_{i n} \leqslant p(a) p(b) \cdot Q \cdot E \cdot D$.

As a corollary of the foregoing Lemma we obtain immediately following theorem.

THEOREM 3.4. - In a tarreizea AO -algebra the multiplication $a, b \rightarrow$ ab is joirtly continuous.

4. TOPOLOGIES ON THE TEST FUNCTION ALGEBRA

The test function algebra Y_{0} is the algebraic direct sum $f_{0}=\dot{\omega}$ $n=0 \quad n$ where $\hat{y}_{0}=c$ and $\mathscr{y}_{n}=\mathcal{Y}\left(R^{d} n\right)$ is the Schwartz space of c^{∞}-functions of rapid decrease. The elements, of \mathscr{f}_{0} are thus sequences $f=\left(f_{0}, f_{1}, \ldots, f, 0, \ldots\right)$
where all but a finite number of $f_{v} \in \mathscr{Y}_{v}$ are equal to zero. We denote the direct sum topology on \mathcal{Y}_{0} by $\tau . \mathcal{Y}_{0}[\tau]$ is the completion of the tensor algebra over φ_{1} (cf.e.g. [5]). The multiplication is defined by
$\left(f g_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\mu+v=n} \quad f_{\mu}\left(x_{1}, \ldots, x_{\mu}\right) g_{v}\left(x_{v+1}, \ldots, x_{n}\right)\right.$
and the involution by
$\left(f^{*}\right)_{n}\left(x_{1}, \ldots, x_{n}\right)=\overline{f_{n}\left(x_{n}, \ldots, x_{1}\right)}$

Let N be an unbounded operator in $L_{2}\left(\mathbb{R}^{\mathrm{d}}\right)$ defining the topology of $\mathscr{\mathcal { L }}_{1}$, i.e. the system $\left\|f_{1}\right\|_{k}=\left\|N^{k} f_{1}\right\| \|_{2}$ defines the usual topology of the
 where $N_{x_{v}}$ is the operator N acting on the variable x_{v}.

Now let be $\left(\gamma_{n}\right)$ a sequence of positive numbers and $\left(k_{n}\right)$ a sequence of integers. In \mathscr{Y}_{0} we define the seminorm

$$
\begin{equation*}
\|f\|_{\left(\gamma_{n}\right),\left(k_{n}\right)}=\sum_{n} \gamma_{n}| | f_{n}| |_{k_{n}} \tag{4.3}
\end{equation*}
$$

The direct sum topology τ of $\mathscr{\mathscr { C }}$ (8) is defined by the system of all possible seminorms (norms) (4.3). Another important topology in \mathscr{L}_{0} is the topology $\boldsymbol{\tau}_{\infty}([6],[7])$ given by the following system of seminorms:

$$
\begin{equation*}
\|f\|_{\left(\gamma_{n}\right), k}=\sum_{n} \gamma_{n}\left\|f_{n}\right\|_{k} \tag{4.4}
\end{equation*}
$$

O^{*}-topologies on the test function algebra

where $\left(Y_{n}\right)$ runs again over all sequences of positive numbers and k over all integers. The topology τ_{∞} is properly weaker than τ but yet a complete topology.

A third important topology in $\dot{\varphi}$ (0) is the topology \mathcal{P} (cf. [8]), the strongest locally convex topology on \mathscr{S}_{0} such that the multiplication on Ψ_{0} is a jointly continuous bilinear mapping.

$$
\begin{equation*}
m: \mathscr{U}_{0}[\tau] \times \mathscr{Y}_{0}[\tau] \rightarrow \mathscr{\mathscr { O }}_{0}[\nsim] \tag{4.5}
\end{equation*}
$$

Since m is surjective (\mathcal{Y}_{0} has a unit element) this topology exists.

LEMMA 4.1. - The multiplication $\mathrm{a}, \mathrm{b} \rightarrow \mathrm{ab}$ is
(i) not jointly continuous in φ (0. $[\tau]$,
(ii) jointly contiruous in $\varphi_{0}\left[\tau_{\infty}\right]$ and
(iii) not jointly continuous in $\oint_{0}[\mathrm{dr}]$.
i) was proved in $[6],[7],[8]$ and $i i)$ can be shown by a simple estimation [7]. (iii) will be proved in the next section, corollary 5.6 .

As an immediate consequence of Lemma 4.1 and the definition of cr we obtain yet the following relation.

$$
\begin{equation*}
\tau_{\infty}<i \nmid<\tau \tag{4.6}
\end{equation*}
$$

From the more or less trivial property i) of the foregoing lemma one gets the following interesting theorem.

O*-topologies on the test function algebra

THEOREM 4.2. - $\varphi_{0}[\tau]$ is not an AO ${ }^{*}$-algebra.

Proof. - $\mathscr{L}_{0}[\tau]$ is the locally convex direct sum of F -spaces and thus a barrelled space. Therefore the theorem follows from theorem 3.4.

The last theorem is connected with the fact that the direct sur topology τ is bad adapted to the order structure of the $*$-algebra \mathscr{U}_{θ}, namely the cone $K=\operatorname{conv}\left\{f^{*} f ; f \in \varphi_{\theta}\right\}$ of positive elements is not normal with respect to the topology τ. This was directly proved in [7] and gives, in connection with theorem 2.3, (i), another proof for theorem 4.2. (About the normality of cones in semiorderd spaces cr. e.g. [9]).

In contrast to τ the topologies τ_{∞} and \mathcal{C} are "bad" from the point of view of the theory of locally convex spaces, but they are better adapted to the order structure of φ_{0} than τ. Namely it holds the following lemma.

LEMMA 4. $2-i)$ Both topologies τ_{∞} and \mathcal{N} are complete, but neither Ecrrological nor barrelled.
ii) The cone K is normal with respect to τ_{∞} and r.
5. 0^{*} - TOPOLOGIES ON φ_{\otimes}.

DEFINITION 5.2. - A topology ξ on a *-algetra R is called 0^{*}-topology
(resp. \tilde{o}^{*}-topology), if $R[\xi]$ is an $A O^{*}$-algebra (resf. $A O^{*}$-algetra).

O*-topologies on the test function algebra

If R carries a normed 0^{*}-topology ξ, then $R[\xi]$ is a B^{*}-algebra and ξ is the only 0^{*}-topology on R. In general on a $*$-algebra different 0^{*}-topologies can exist, as we see from the following theorem and (4.6).

THEOREM 5.2. - τ_{∞} and cr are 0^{*}-topoloaies on f_{0}

For τ_{∞} the statement was proved in $[6]$ and the proof for frill be given in what follows t (theorem 5.5).

We start first with some general considerations. Let $R[\xi]$ be a topological *-algebra and ω a positive continuous functional on $R[\xi]$. By $a \mapsto A_{\omega}(a)$ we denote the GNS-representation associated with ω witr the domain \mathbb{E}^{4} and the cyclic vector $\Omega_{\omega}([1],[5])$, uniquely determined up to unitary equivalence by

$$
\begin{equation*}
\omega(a)=\left\langle\Omega_{\omega}, A_{\omega}(a) \Omega_{U}\right\rangle \tag{5.1}
\end{equation*}
$$

The universai representation $a \rightarrow A_{u}(a)$ is the direct sum of all GNS-repres tations,

$$
\begin{equation*}
A_{u}(a)=\sum_{\omega} \otimes A_{w}(a) \tag{5.2}
\end{equation*}
$$

defined on the algebraic direct sum:

$$
\mathcal{D}_{\mathbf{u}}=\sum_{\omega} \quad \otimes \quad \mathscr{D}_{\omega}
$$

with the natural scalar product. Given any vector $\phi=\sum_{\omega} \oplus_{\omega}$ of D_{u} (only finite many components ϕ_{ω} are different from zero) then

$$
\begin{equation*}
A_{u}(a) \phi=\sum_{\omega} \oplus A_{w}(a) \phi_{u} \tag{5.4}
\end{equation*}
$$

We call a topological *-algebra $\mathrm{R}[\xi]$ semi-simple, if the universal representation is faithfull. $A_{u}(R)=A_{R}$ is then an $O p^{*}$-algebra isomorphic to R, which is called the universal realization of R.

DEFINITION 5.3 - Given any semi-simple $R[\xi]$, then the uniform topolocy
${ }^{\top} D_{u}$ on A_{R} defines by the isomorphism a topology on R, which $i \in$ aenote by ξ_{u} and call the $\tilde{0}^{*}$-topology generated by ξ.

By simple considerations one can prove the following lemma [2].
LEAMA 5.4. - If ξ is a barrelled topology on R, then ξ_{u} is the strongest $\tilde{0}^{*}$-topology on R weaker than ξ.
E.g. if $C^{1}[0,1]$ is the topological * -algebra of one-times differentiable functions with the natural topology given by the norm $\|f\|_{C}=\sup _{x}|f(x)|$, the strongest C-norm on $C^{1}[0,1]$.

Now we can state and prove the main theorem of this section.
THEOREM 5.5. - \mathcal{A} is the strongest \tilde{o}^{*}-topology on φ_{\oplus} which is weaker than the direct-sum topology τ, i.e. $\mathcal{N}=\tau_{u}$.

Proof. - i) Let ξ be any $\tilde{0}^{*}$-topology on φ_{0} weaker than τ, then $\mathcal{\psi}_{0}[\xi]$ is algebraically and topologically isomorphic to an $\tilde{o}^{*}-$ algebra $\mathcal{A}\left[\tau_{\Omega} \mid\right.$ by $\forall A(f)$

O*-topologies on the test function algebra

which is therefore a weakly conginuous representation of $\mathscr{S}_{\mathrm{L}}[\tau]$. Hence, $(a, b) \rightarrow A(a b)$ is by lemma 3.3 a jointly continuous mapping.

$$
\begin{equation*}
\left.\varphi_{0}[\tau] \times \varphi_{0}[\tau] \rightarrow \mathcal{U}_{D}\right]=\varphi_{0}[\xi] \tag{5.6}
\end{equation*}
$$

From the definition of \mathscr{C} then it follows that is stronger than ξ.
ii) Now we show w to be an -topology. Since Nr is * topology for which the cone K is normal (lemma 4.3) it is defined by seminorms

$$
\begin{equation*}
p_{\mathbf{M}}(f)=\sup _{u \in M}|\omega(f)| \tag{5.7}
\end{equation*}
$$

where the sets M are weakly bounded sets of γ-continuous positive functionals $\left([9]\right.$, chap. 1 . Let $a \rightarrow A_{u}(a)$ be the universal representation of $\Psi_{6}[T]$ onto A_{u} and M any set of (5.7). We put $H=\left\{\Omega_{\omega} ; \omega \in M\right\}-2$. M is if -bounded. In fact

$$
\begin{align*}
\left.\sup _{\Omega_{w}} \in H_{b}(f) A_{w}\right|^{2} & =\sup _{\omega \in M}<\Omega_{w}, A_{u}\left(f^{*} f\right) \Omega_{w}> \tag{5.8}\\
= & \sup ^{\omega \in M} \omega(f(f)<\infty
\end{align*}
$$

Further, any seminorm (5.7) of c can be estimated in the following way (see (5.1-4)) :

$$
\begin{aligned}
\mathrm{P}_{\mathrm{M}}(f) & =\sup _{\Omega_{\omega} \in \mathcal{H}}\left|\left\langle\Omega_{\omega}, A_{u}(f) \Omega_{\omega}\right\rangle\right| \\
& \leqslant \sup _{\phi, \psi \in \mathcal{M}}\left|<\phi, A_{u}(f) \psi\right\rangle\left|=\left|\left|A_{u}(f)\right|_{\mathcal{N}}\right.\right.
\end{aligned}
$$

(5.9) means that any seminorm of C can be estimated by a seminorm of $\tau_{u}=\tau_{D_{u}}$. Thus, τ_{u} is stronger than \mathcal{U}. Together with i) this yields $\mathcal{N}=\tau_{u}$. Q.E.D..

In [ε], theorem 1, it was proved that for any seminorm $q(f)$ of τ there is a positive continuous functional w such that
$q(f) \leqslant \omega\left(f^{*} f\right)^{1 / 2}=\left\|A_{u}(f) \Omega_{\omega}\right\|$
A consequence of that is $\tau \leqslant \sigma^{2} u$ and since τ is barreled we have $\tau=\sigma_{u}=\tau D_{u} \quad$ (lemma 3.2).

Therefore

$$
\begin{equation*}
\sigma_{\mathscr{D}_{u}} \propto \tau_{D_{u}} \lesssim \sigma^{D_{u}}=\tau^{\mathscr{D}_{u}} \tag{5.11}
\end{equation*}
$$

which is one possible relation between the four topologies of definition 2.1, already mentioned in (2.1). $\tau_{\mathscr{Q}_{u}}=\mathcal{Y}$ is different from $\tau^{\widehat{\alpha}_{u}}=\tau$ since $\mathscr{S}_{\theta}[\mathscr{V}]$ is an AO -algebra but not $\mathcal{S}_{0}[\tau]$. Since in an 0^{*}-algebra $\mathcal{A}[\tau,]_{n}$ the multiplication $(a, b) \rightarrow a t$ is jointly continuous if and only if $\tau_{\mathscr{D}}=\tau^{2}([3]$, theorem 3.2), we obtain from (5.11) yet the

COROLLARY 5.6. - The multiplication $(f, g) \rightarrow E E$ is not joint liz continuous with respect to $r=\tau{ }_{D_{u}}$.

O^{*}-topologies on the test function algebra

REFERENCES.

[1] C.E. RICKART, General, Theory of Banach Algebras, Princeton (1960).
[2] C. LASSNER, Topologien auf Op -Algebren. To appear.
[3] G. LASSNER, Topological Algebras of Operators, Rep. Math. Phys., 3 (1972), p. 279-ج.93.
[4] K. SCHMDGER, The Order Stmeture of Topological -Aigebras of unbounded Operators, Rep. Math. Phys. To appear.
[5] H.J. BORCHERS, Algebraic aspects of i'ightmar field theory, in : Sen R.N., Veil C. (Eds.), Statistical mechanics and fielí theory, Haifa Surner Scholl, 1971, New York, 1972.
[6] G. LASS:IEF, On the Stmucture of the Pest Function Algebra, Dubna Preprint E2-5254 (1970), Rep. Math. Phys, to appear.
[7] G. LASSNER, U'ber die Fiealisierbarkeit topologiscner Iensoralgebrer, Mat.. !!achr. 62 (1974), p. 89-101.
[8] J. YNGVASCN, Or the Aigebra of Test Functions for Fieid Operatore, Comm.Matn. Prys. 34 (1973), p. 315-333.
[9] E.H. SCHAEFER, TopoZogical Vector Spaces, New York (1, € $)$.

