Bohumil Cenkl

Iterated Integrals and Homotopy Periods

Publications du Département de Mathématiques de Lyon, 1976, tome 13, fascicule 4 , p. 27-71
http://www.numdam.org/item?id=PDML_1976__13_4_27_0
© Université de Lyon, 1976, tous droits réservés.
L'accès aux archives de la série «Publications du Département de mathématiques de Lyon » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ITERATED INTEGRALS AND HOMJTOPY PERIODS

by Bohumil CENKL

The cohomology of the loop space of a simply connected space is well understood, and an extensive work has been done in this area since the appearance of the fundamental paper of Adams [1] in 1956. Nevertheless it is an interesting observation of Chen [4] that, over R or C, this cohomology can be computed from certain complex (whose objects are called iterated integrals), constructed from the de Rham complex of the underlying space.

From that result it seemed obvious that one should relate the de Rham theory also to the study of the fundamental group in general. First results in this direction were obtained again by Chen [4], where he used the de Rham theory over C or R. A conceptual description of the situation over C, R or Q was indepencently given by Sullivan in the framework of minimal models. Some of the results were obtained, by still another method, by Stallings.

In this lecture, I relate the approach of Chen to that of Sullivan. The differential graded algebra of iterated integrals is redefined so that it is an algebra over C, R, Q or Z. The fundamental properties are proved by different method then in Chen's original work, which relayed heavily on the differential forms over

[^0]C or R. Chen's theorem for the loop space of a simply connected manifold is proved also over Z. For a nonsimply connected space there is defined a map T from the minimal model M of the tower Of Eilenberg-MacLane spaces associated with the fundamental group of the space to the algebra of iterated integrals related to the space. This map T is the analogue of the translation of a power series connection of Chen. The purpose of this map T is twofold. On one side it gives the isomorphism of the algebras of nilpotent quotients of the lower central series, tensored with C, R or Q with the duals of the subalgebras of the minimal model of the tower of Eilenberg-MacLane spaces, with the same coefficients. This isomorphism is called the de Rham theorem for the fundamental group. On the other hand the image in the algebra of iterated integrals consists of all homotopy periods (homotopy invariants of pointed maps of a circle into the space). It is shown, that this homotopy periods are completely determined by the matrix Massey products in the minimal model M.

The iterated integrals, in conjunction with the minimal model, appear to be a usefull tool in the homotopy theory.

1. Iterated integrals and Adams theorem
1.1 Singular cubic cohomology

This is included in here just to establish the notation.

Let I be the segment $[0,1]$, and let $I^{n}=$ $=$ IX...xI (n-times) be the standard n-cube with the coordinates $\left(t_{1}, \ldots, t_{n}\right), 0 \leq t_{i} \leq 1$. We define now two sets of maps, called the face and degeneracy maps respectively:

$$
\begin{aligned}
& \lambda_{i}^{\varepsilon}: I^{n-1} \rightarrow I^{n}, \mu_{i}: I^{n} \rightarrow I^{n-1} \\
& \lambda_{i}^{\varepsilon}\left(t_{1}, \ldots, t_{n-1}\right)=\left(t_{1}, \ldots, t_{i}, \varepsilon, t_{i+1}, \ldots, t_{n-1}\right), \\
& \mu_{i}\left(t_{1}, \ldots, t_{n}\right)=\left(t_{1}, \ldots, \hat{t}_{i}, \ldots, t_{n}\right), \\
& i=1,2, \ldots, n, \varepsilon=0,1 . \text { These maps satisfy the } \\
& \text { relations: }
\end{aligned}
$$

$$
\text { (i) } \lambda_{j}^{n} \lambda_{i}^{\varepsilon}=\lambda_{i+1}^{\varepsilon} \lambda_{j}^{\eta} \quad, j \leq i
$$

$$
\text { (ii) } \mu_{i} \mu_{j}=\mu_{j} \mu_{i+1} \quad, j \leq i
$$

$$
\text { (iii) } \mu_{j} \lambda_{i}^{\varepsilon}=\lambda_{i-1}^{\varepsilon} \mu_{j} \quad, j<i
$$

$$
\mu_{j} \lambda_{i}^{\varepsilon}=\text { identity } \quad, j=i
$$

$$
\mu_{j} \lambda_{i}^{\varepsilon}=\lambda_{i}^{\varepsilon} \mu_{j-1} \quad, j>i
$$

A singular n-cube in a topological space X is a continuous map $f: I^{n} \rightarrow X$. We say that the n-cube $f " I^{n} \rightarrow X$ is deqenerate if there exists a singular ($n-1$ - cube $g: I^{n-1} \rightarrow X$ such that $f=g \cdot \mu_{n}$. The $(n-1)$-cube g is then uniquelly determined by f; namely $g=E \lambda_{n}^{0}=$ $=f \lambda_{n}^{1}$. We denote by $Q_{n}(X)$ the free abelian group whose basis is the set of all singular n-cubes in X. On the free abelian group

$$
Q(X)=\sum_{n=0 Q_{n}}^{\infty}(x)
$$

we define the oeprator $\partial_{0}: Q(X) \rightarrow Q(X)$,

$$
\partial_{O} f={ }_{i}^{n} \sum_{1}(-1)^{i+1}\left(f \cdot \lambda_{i}^{1}-f \cdot \lambda_{i}^{0}\right)
$$

From the relation (i) we get $\partial_{Q} \partial_{Q}=0$. On the other hand from (iii) if follows that the subgroup

$$
D(X)={ }_{n} \stackrel{E}{=}_{0} D_{n}(X)
$$

of $Q(X)$ generated by the degenerate cubes is closed under ∂_{Ω}, the particular $\partial_{Q} D_{n-1}(X) \subset D_{n-1}(X)$. Hence, if we define

$$
K(X)=Q(X) / D(X)
$$

$K(X)=\sum_{n=0}^{\infty} K_{n}(X), K_{n}(X)$ naturally isomorphic with $\Omega_{n}(X) / D_{n}(X)$, we get a complex $\left\{K(X), \partial_{K}\right\}$,
${ }^{2} K$ being the differential induced on the quotient $K(X)$. The cohomology of this complex, with coefficients in the abelian group G is called the singular cubic homology of X with coefficients in G.

$$
\text { By } K^{n}(X, G) \text { we denote the group Hom }\left(K_{n}(X), G\right)
$$

that means the group of cubic n-dimensional cochains with coefficients in G. The coboundary operator will be denoted by δ_{K}. And the homology and cohomology group will be denoted by $H_{*}(X, G)$ and $H^{*}(X, G)$ respectively. The face and degeneracy operators $\lambda_{i}^{\varepsilon}, \mu_{i}$ induce the maps

$$
\ell_{i}^{\varepsilon}: K_{n}(X) \rightarrow K_{n-1}(X), \ell_{i}^{\varepsilon}(f)=\lambda_{i}^{\varepsilon} \circ f,
$$

and

$$
m_{i}: k_{n-1}(x) \rightarrow k_{n}(x), m_{i}(g)=\mu_{i} \circ g
$$

From now on we take $G=k$ to be C, R, Q or 2 .
Let $A\left(I^{n}\right)=P \geqslant 0 \quad A^{P}\left(I^{n}\right)$
be the module of differential forms, considered as a k-module, on the n-cube I^{n}. Then we define

$$
\begin{aligned}
A^{p}(x)= & \left\{w=\left(w_{n}\right)_{n \geq 0}, w_{n} \in \operatorname{Hom}_{k}\left(k_{n}(X), A^{p}\left(I^{n}\right)\right)\right. \\
& \left.\mid\left(\lambda_{i}^{\varepsilon}\right)^{*} w_{n}=w_{n-1} \circ \ell_{i}^{\varepsilon},\left(\mu_{i}\right)^{*} w_{n-1}=w_{n} \circ m_{i}\right\} .
\end{aligned}
$$

The abelian group $A(X)=p_{0}^{\Sigma_{0}} A^{p}(X)$ has a
structure of a commutative graded algebra with respect to the product

$$
\begin{gathered}
\wedge: A^{p}(X) \times A^{q}(X) \rightarrow A^{p+q}(X) \\
\left(w_{n}^{\prime} \wedge w_{n}^{n \prime}\right)(f)=w_{n}^{\prime}(f) \wedge w_{n}^{\prime \prime}(f) \\
w^{\prime} \wedge w^{\prime \prime}=\Sigma w_{n}^{\prime} \wedge w_{n}^{\prime \prime}, w^{\prime}=\Sigma w_{n}^{\prime}, w^{\prime \prime}=\Sigma w_{n}^{\prime \prime}
\end{gathered}
$$

On $A(X)$ there is the differential

$$
\begin{gathered}
d: A^{p}(X) \rightarrow A^{p+1}(X), \\
\left(d w_{n}\right)(f)=d\left(w_{n}(f)\right), d w=\Sigma d w_{n}, w=\Sigma w_{n} \cdot
\end{gathered}
$$

Thus $A(X)$ becomes a differential graded algebra. We talk about the cubic singular de Rham complex $\{A(X), d\}$ of the topological space X. The cohomology of this complex $\mathrm{F}^{*} \mathrm{DR}(\mathrm{X} ; \mathrm{k})$ is called the cubic singular de Rham cohomology of the topological space X. Then we have

Theorem 1. There is an isomorphism

$$
H_{D R}^{*}(X ; k) \cong H^{*}(X ; k)
$$

where on the right hand side is the singular cubic cohomology with coefficients k.

Proof. The statement follows from a
more general theorem proved in [2] and [8] once a transition between the simplicial and cubic theories is made.

1.2 An algebraic construction.

Let M be an oriented differentiable manifold and let $\Omega(M)$ be the space of piecewise smooth loops at a base point x_{0} on M. The simplest iterated integrals, as introduced originally by Chen [3], can be defined as follows: Let $\alpha: I^{n} \rightarrow \Omega(M)$ be a representative for $a^{\prime} \varepsilon K_{n}(\Omega(M))$. Then a defines $\hat{\alpha}: I^{n+1} \rightarrow M, \hat{\alpha}(x, t)=\alpha(x)(t)$, $(x, t) \varepsilon I^{n} \times I=I^{n+1}$. Then for any $a \in A^{G+1}(M)=$ $=$ the module of differential $(q+1)$-forms on M $\int_{0}^{1} \hat{\alpha}^{*} a$ is a q-form on I^{n}, and $\int_{0}^{t} \hat{\alpha}^{*} a$
is a q-form on I^{n+1}. Because the integration takes place in I^{n+1} (it is in fact an integration over the fibre I in the projection $I^{n} \times I \rightarrow I^{n}$) it is convenient to introduce this as an algebraic operation. Thus we look more closely at the algebraic version of the algebras $A^{*}(I), A^{*}\left(S^{1}\right)$, $A^{*}\left(I^{n}\right), A^{*} \cdot\left(I \times I^{n}\right), A^{*}\left(S^{1} \times I^{n}\right)$. The corresponding algebraic objects will be denoted by K, I, V, A and \tilde{A} respectively.

Let k be a commutative ring with a unit. Assume that we are given the following data :
(i) A DGA-algebra (The definition is section 6.)

$$
K=\bigoplus_{r \geq 0} K^{r}, K^{S}=0, s>1
$$

with the differential and augmentation

$$
\delta_{K}: K^{r} \rightarrow K^{r+1}, \varepsilon_{K}: K \rightarrow k
$$

$\varepsilon_{\mathrm{K}}\left(\mathrm{K}^{r}\right)=0$ for $\mathrm{I} \geqq 1$. The cohomology ring
$H^{*}(K)$ is trivial, ie. $H^{0}(K) \cong k, H^{r}(K)=0$ for $\mathrm{r} \geq 1$.
(ii) There is a DGA-algebra

$$
L=\underset{r \geq 0}{\oplus} L^{I}, L^{s}=0, s>1
$$

with the differential and augmentation

$$
\delta_{L}: L^{Y} \rightarrow L^{I+1}, \varepsilon_{L}: L \rightarrow k
$$

$\varepsilon_{L}\left(L^{r}\right)=0, r \geq 1$. The cohomology ring has the property $H^{0}(L) \cong k, H^{1}(L) \cong k, H^{S}(L)=0$, $s>1$.
(iii) Let $V=\underset{r \geq 0}{\oplus} V^{r}$ be a DGA-algebra over k with
the differential and augmentation

$$
\delta_{V}: V^{r} \rightarrow V^{r+1} \quad, \varepsilon_{V}: V \rightarrow k
$$

(iv) There is a DGA-algebra morphism

$$
v_{0}: L \rightarrow K
$$

which induces an isomorphism $\nu_{0}^{*}: H^{\circ}(L) \rightarrow H^{0}(K)$.

Now we define two new DGA-algebras
$A=\underset{r \geq 0}{\oplus} A^{r}, A=K \otimes_{K} V$, with the differential $A_{A^{\prime}}$
and
$\widetilde{A}=\underset{r \geq 0}{\oplus} \tilde{A}^{r}, \tilde{\AA}=L \otimes_{k} V$, with the differential $d_{\tilde{A}}$.
The product in A and \tilde{A} is simply denoted by • .
The morphism v_{0} induces the DGA-algebra morphism

$$
\nu: \tilde{A} \rightarrow A \quad, \quad v=v_{0} \otimes 1
$$

Note that both A and \tilde{A} are bigraded, with the gradation given by
$A^{r+1}=A^{0, r+1} \Theta A^{1, r}, A^{0, r+1}=K^{0} \otimes V^{r+1}, A^{1, r}=R^{1} \otimes V^{r}$.

We denote by $\lambda^{\prime}, \lambda^{\prime \prime}$ the projections

$$
\lambda^{\prime}: A^{r+1} \rightarrow A^{1, r}, \lambda^{\prime \prime}: A^{r+1} \rightarrow A^{0, Y+1}
$$

In fact any element a εA^{r+1} can be written
uniquelly in the form $a=t \otimes a^{\prime}+a^{\prime \prime}$,
$t \otimes a^{\prime} \varepsilon A^{1, r}, a^{\prime \prime} \varepsilon A^{0, r}$. Thus $\lambda^{\prime}(a)=t \otimes a^{\prime}$,
$\lambda^{n}(a)=a^{\prime \prime}$.
Analogously we have
$\tilde{A}^{r+1}=\tilde{A}^{0, r+1} \oplus \tilde{A}^{1, r}, \tilde{A}^{0, r+1}=L^{0} \otimes V^{r+1}, \tilde{A}^{1, r}=L^{1} \otimes V^{r}$.
The augmentation ε_{K} induces the morphism
$\varepsilon_{A}: A^{r} \rightarrow A^{-I, r}=k \otimes_{k} V^{r}=V^{r}, \varepsilon_{A}\left(A^{s, r}\right)=0, s>0$.

And similarly ε_{I} induces the morphism

$$
\varepsilon_{A}: \tilde{A}^{I} \rightarrow \tilde{A}^{-1, I}=k \otimes_{k} V^{I}=V^{I}, \varepsilon_{A}\left(\tilde{A}^{s, I}\right)=0, s>0
$$

The differential d_{A} in A,

$$
a_{A}=\left(d_{k} \otimes 1\right)+(-1)^{s}\left(1 \otimes d_{y}\right): A^{s, r} \rightarrow A^{r+s+1}
$$

has a natural splitting $d_{A}=d_{A}{ }^{\prime}+d_{A}^{\prime \prime}$, $d^{\prime}: A^{s, r} \rightarrow A^{s, 1+r}, d^{\prime \prime}: A^{s, r} \rightarrow A^{s, r+1}$. And similarly in $\tilde{A}, ~ त \tilde{A}=\frac{\alpha_{A}}{}{ }^{\prime}+\frac{d}{A}{ }^{\prime \prime}$. The unit $i: k \rightarrow k^{0}$ together with the module morphism $h_{K}: K^{1} \rightarrow K^{0}$ and the augmentation $\varepsilon_{K}: K^{0} \rightarrow k$, such that in the resolution

$$
\begin{aligned}
& 0 \rightarrow K \xrightarrow[R]{i} R^{R^{d_{K}}} R^{l} \rightarrow 0 \\
& \varepsilon_{K} \quad h_{K}
\end{aligned}
$$

hold the relations:

$$
\varepsilon_{K} \cdot i=l_{k}, h_{K} \cdot d_{K}+i \cdot \varepsilon_{K}=l_{K^{0}}, i s
$$

the contracting homotopy for $\varepsilon_{K}: K \rightarrow k$. This gives the contracting homotopy for the cochain transformation $\varepsilon_{A}: A^{r} \rightarrow A^{-1, r}, x \geq 0$.

There are the module morphisms

$$
h^{\prime}: A^{1, r}+A^{0, r}
$$

$h^{\prime}=h_{K} \otimes 1$, and

$$
C: A^{-1, I} \rightarrow A^{0, I}
$$

$=i \otimes 1$, such that
$\varepsilon_{A} \cdot i=1_{A^{-1, r}}, h^{\prime} \cdot d_{A}^{\prime}+1 \cdot \varepsilon_{A}=1_{A} 0, I$, and $h^{\prime} \cdot d_{A}^{\prime \prime}+d_{A}^{\prime \prime} \cdot h^{\prime}=0$. Thus we have an analogue of the above sequence (after tensoring with v^{r})

$$
0 \rightarrow A_{E_{A}}^{-1, r} A_{h^{\prime}}^{0, r}{ }_{R}^{d_{A}^{\prime}} A^{1, r} \rightarrow 0
$$

Now we define the morphism of modules

$$
h=(-1)^{Y} h^{\prime} \lambda^{\prime}: A^{Y+1}+A^{0, r}
$$

and

$$
\sigma: A^{r+1} \rightarrow 1\left(A^{-1, r}\right)
$$

$\sigma\left(A^{0, r+1}\right)=0$. We require that σ satisfies the additional properties :

$$
\sigma d_{A}^{\prime}=0 \text { on } v\left(A^{r+1}\right), d_{A}^{\prime \prime} \sigma+\sigma d_{A}^{\prime \prime}=0 .
$$

From now on we assume these axioms for the operations.

Proposition 1. We have the relations

(1) $d_{A}^{\prime \prime} h-h d_{A}^{\prime \prime}=0$
(2) $h^{\prime} d_{A}^{\prime}=1-\varepsilon_{A}$
(3) $d_{A}^{\prime} h^{\prime}=1$
(4) $\lambda^{\prime} d_{A}^{\prime} \quad=d_{A}{ }^{\prime}$
(5) $d_{A}^{\prime} \lambda^{\prime}=0$
(6) $d_{A}{ }^{\prime \prime} \lambda^{\prime}-\lambda^{\prime} d_{A} "=0$
(7) $d_{A}{ }^{\prime} \sigma$
(8) $\sigma A_{A}{ }^{\prime}$ $=0$
$=0$ on the image $\nu\left(\tilde{A}^{r+1}\right)$
(9) $d_{A} " \sigma+\sigma d_{A} "=0$

Proof. All these properties follow immediately from the above definitions. We look more closely only at (1). First of all observe that it is enough to show that

$$
\begin{equation*}
h^{\prime} d_{A} "+d_{A} h^{\prime}=0 \tag{10}
\end{equation*}
$$

because from here we have, for any $a \varepsilon A^{r+1}$, $d_{A}^{\prime \prime h}(a)=(-1)^{r} d_{A} h^{\prime} \lambda^{\prime}(a)=(-1)^{r+1} h^{\prime} d_{A}^{\prime \prime \lambda^{\prime}}(a)=$ $=(-1)^{r+l_{h}} \lambda^{\prime} d_{A}^{\prime \prime}(a)=h d_{A}^{\prime \prime}(a)$. But (10) follows from the fact that for $t \otimes a^{\prime} \varepsilon K^{l} \otimes v^{r}=A^{1, r}$. $h^{\prime} d_{A}^{\prime \prime}\left(t \otimes a^{\prime}\right)=-\left(h_{K} \otimes 1\right)\left(t \otimes d_{A}^{\prime \prime} a^{\prime}\right)=-h_{K}(t) \otimes d_{A} \prime^{\prime} a^{\prime}=$ $=-d_{A}^{\prime \prime}\left(h_{K}(t) \otimes a^{\prime}\right)=-d_{A}^{\prime \prime}\left(h_{K} \otimes l\right)\left(t \otimes a^{\prime}\right)=-d_{A}^{\prime \prime} h^{\prime}\left(t \otimes a^{\prime}\right)$.

Let $\bar{B}(A)$ be the bar construction on a DGA-algebra A over k. Recall that $B(A)$ is the vector space generated by

$$
\left[\begin{array}{l|l|l}
a_{1} & \ldots & a_{r}
\end{array}\right]
$$

where $a_{i} \varepsilon \mathbb{A}$ and the degree of a_{i}, denoted by $\left|a_{i}\right|$ is ≥ 1. As usually, for the bar construction on a DGA-algebra (graded positively)

$$
\operatorname{deg}\left[a_{1}|\ldots| a_{r}\right]=\left|a_{1}\right|+\ldots+\left|a_{I}\right|-r
$$

There is defined the shuffle product

$$
\begin{aligned}
& {\left[a_{1}|\ldots| a_{r}\right\} *\left[a_{r+1}|\ldots| a_{r+s}\right]=} \\
& \quad=\sum_{\pi}(-1)^{\sigma(\pi)}\left[a_{\pi(1)}|\ldots| a_{\pi(r+s)}\right]
\end{aligned}
$$

where the summation goes over all (r, s)shuffles π and $\sigma(\pi)=\Sigma\left(\left|a_{i}\right|-1\right)\left(\left|a_{r+j}\right|-1\right)$ summed over all pairs $(i, r+j)$ such that $\pi(r+j)<\pi(i)$. [For this look at S. MacLane "Homology" pp 312-133]. Now we apoly the bar construction to the algebra A. This product makes $\bar{B}(A)$ a commutative algebra.

There is also the coproduct

$$
\psi\left[a_{1}|\ldots| a_{r}\right]=\sum_{i=0}^{r}\left[a_{1}|\ldots| a_{i}\right] \otimes\left[a_{i+1}|\ldots| a_{r}\right]
$$

the differential $\partial=\partial^{\prime}+\partial^{\prime \prime}$ defined by

$$
\begin{aligned}
& \partial^{\prime}\left[a_{1}|\ldots| a_{r}\right]=\sum_{i=1}^{r-1}(-1)^{\left|a_{1}\right|+\ldots+\left|a_{i}\right|-i-1}\left[a_{1}|\ldots| a_{i} a_{i+1}|\ldots| a_{I}\right. \\
& \partial^{\prime \prime}\left[a_{1}|\ldots| a_{r}\right]=\sum_{i=1}^{r}(-1)^{\left|a_{1}\right|+\ldots+\left|a_{i-1}\right|-1}\left[a_{1}|\ldots| a_{A^{\prime}} a_{i}|\ldots| a_{r}\right] \ldots
\end{aligned}
$$

Proposition 2. $\bar{B}(A)$ with the product * , coproduct ψ and the differential ∂ is a differential Hopf algebra.

Proof. It is enough to check that * , ψ commute with the differential.

Now we define the morphism of modules

$$
H_{0}: B(A) \rightarrow A^{0, *} \quad \text { by }
$$

$$
H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right)=h\left(h\left(\ldots h\left(a_{1}\right) a_{2}\right) \ldots a_{r}\right)
$$

Lemma 1. $d_{A} " H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right)=$

$$
\begin{aligned}
& =\sum_{i=1}^{r}(-1)\left|a_{1}\right|+\ldots+\left|a_{i-1}\right|-i-1 \\
& H_{0}\left(\left[a_{1}|\ldots| d a_{i}|\ldots| a_{r}\right]\right)+ \\
& +\sum_{i=1}^{\sum_{i}(-1)}\left|a_{1}\right|+\ldots+\left|a_{i}\right|-i \\
& H_{0}\left(\left[a_{1}|\ldots| a_{i} a_{i+1}|\ldots| a_{r}\right]\right)+ \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r} H_{0}\left(\left[a_{1}|\ldots| a_{r-1}\right]\right) \cdot \lambda^{\prime \prime}\left(a_{r}\right)+ \\
& +(-1)^{\left|a_{1}\right|} H_{H_{0}}\left(\left[l_{1} \varepsilon \lambda n\left(a_{1}\right) \cdot a_{2}\left|a_{3}\right| \ldots \mid a_{r}\right]\right)+
\end{aligned}
$$

$$
+\sum_{i=2}^{r-1}(-1)\left|a_{1}\right|+\ldots+\left|a_{i}\right|-i-1 H_{0}\left(l_{1} \varepsilon \lambda^{\prime \prime}\left(H_{0}\left(\left[a_{1}|\ldots| a_{i-1}\right]\right) \cdot a_{i}\right) a_{i+1}\left|a_{i+2}\right| \ldots \mid a_{I}\right)
$$

$$
+(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r-1} \quad \imath \varepsilon \lambda^{\prime \prime}\left(H_{0}\left(\left[a_{1}|\ldots| a_{r-1}\right]\right) \cdot a_{r}\right)
$$

Proof. By induction with respect to I. For ral we get

$$
\begin{aligned}
& d_{A}^{\prime \prime} H_{0}([a])=d^{\prime \prime} h(a)=h\left(d^{\prime \prime} a\right)=h(d a)-h\left(d^{\prime} a\right)= \\
= & h(d a)+(-1)|a|-1 h^{\prime} \lambda^{\prime}\left(d^{\prime} a^{\prime \prime}+d^{\prime}\left(t \otimes a^{\prime}\right)\right)=h(d a)+ \\
+ & (-1)|a|-1 a^{\prime \prime}+(-1)|a|\left\{\varepsilon\left(a^{\prime \prime}\right)=H_{0}([d a])+(-1)|a|-1 a^{n}+\right. \\
+ & (-1)|a|_{: \varepsilon \lambda^{\prime \prime}(a)}^{,} .
\end{aligned}
$$

Similar computation is done for $r=2$ and $r=3$

as the 4 th and 5 th term occure there for the first time. Suppose that the formula is true for r.

Then

$$
\begin{aligned}
& d{ }_{A} H_{0}\left(\left[a_{1}|\ldots| a_{r+1}\right]\right)=d A_{A} h\left(H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}=\right. \\
& =h\left(d{ }_{A} H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}+\right. \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r} n\left(H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot d_{A}^{n} a_{r+1}=\right. \\
& =h\left(d^{\prime \prime} H_{0}\left(\left[a_{1}|\ldots| a_{r}\right] \cdot a_{r+1}\right)\right. \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r} h\left(H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot d_{A} a_{r+1}+\right. \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r-1} h\left(H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot d^{\prime} A_{r+1} a_{r}\right) .
\end{aligned}
$$

Now we compute the last term. Namely

$$
\begin{aligned}
& (-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r-1} h\left(H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot d^{\prime} A^{a_{r+1}}\right)= \\
& =(-1)^{\left|\cdot a_{1}\right|+\ldots+\left|a_{r}\right|-r} H_{0}\left(\left[a_{1}|\ldots| a_{r-1} \mid a_{r} \cdot a^{n}{ }_{r+1}\right]\right)+ \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r+1}\right|-r-1} H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a^{n}{ }_{r+1}+ \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r+1}\right|-r} \quad\left\{\varepsilon \lambda^{\prime \prime}\left(H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}\right)\right.
\end{aligned}
$$

And finally, using this and the assumption, we get the formula.
Q.E.D.

And for the composition

$$
\begin{gathered}
H=\sigma \cdot \hat{H}_{0}: \bar{B}(A) \rightarrow 1\left(A^{-1, *}\right), \\
\hat{H}_{0}\left(\left[a_{1}|\ldots| a_{r+1}\right]\right)=H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) a_{r+1}
\end{gathered}
$$

we get $H\left(\left[a_{1}|\ldots| a_{r+1}\right]\right)=\sigma\left\{H_{0}\left(\left[a_{1}|\ldots| a_{r}\right\}\right) \cdot a_{r+1} ;\right.$
Lemma 2. $d_{A} H\left(\left[a_{1}|\ldots| a_{\underline{L}}\right]\right)=H\left(a\left[a_{1}|\ldots| a_{r}\right]\right) \rightarrow$

$$
+(-1)^{\left|a_{1}\right|-1} H\left(\left[\varepsilon^{\prime} \varepsilon \lambda^{\prime \prime}\left(a_{1}\right) \cdot a_{2}\left|a_{3}\right| \cdots \mid a_{r+1}\right]\right)+
$$

$$
\begin{aligned}
& +\sum_{i=1}^{r-1}(-1) a_{1}\left|+\ldots+\left|a_{i}\right|-i \quad H\left(\left[1 \varepsilon \lambda \prime\left(H_{0}\left(\left[a_{1}|\ldots| a_{i-1}\right]\right) \cdot a_{i}\right) a_{i+1}\left|a_{i+2}\right| a_{i+3}|\ldots| a_{r+1}\right.\right.\right. \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r} \sigma\left(2 \varepsilon \lambda^{\prime \prime}\left(H_{0}\left(\left[a_{1}|\ldots| a_{r-1}\right]\right) \cdot a_{r}\right) \cdot a_{r+1}\right) \text { - } \\
& +\sigma d^{\prime}{ }_{A}\left(H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}\right) . \\
& \text { Proof. } d_{A} H\left(\left[a_{1}|\ldots| a_{r+1}\right]\right)=d_{A} \sigma\left\{H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}\right\}= \\
& =d_{A} \sigma\left\{H_{0}\left(\left[a_{1} \quad \ldots a_{r}\right]\right) \cdot a_{r+1}\right\}= \\
& =-\sigma\left\{d_{A}^{\prime \prime} H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}\right\}+\left.(-1)\right|_{a_{1}\left|+\ldots+\left|a_{r}\right|-r-1\right.} ^{\sigma\left\{H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot d_{A}^{\prime \prime} a_{F+\because} .\right.} \\
& =-\sigma\left\{d_{A} H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}\right\}+(-1) \quad\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r-1 H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot c_{A} a_{r+1} \vdots \\
& \left.+(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r}{ }_{\sigma\left\{H_{0}\right.}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{A}^{\prime} a_{r+1}\right\} .
\end{aligned}
$$

Next we use the formula from lemma 1 and compute the last term

$$
\begin{aligned}
& (-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r} \quad \sigma\left\{H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot d_{A}^{\prime} a_{r+1}\right\}= \\
& =\sigma d^{\prime}{ }_{A}\left\{H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}\right\}+ \\
& +(-1)^{\left|a_{1}\right|+\ldots+\left|a_{r}\right|-r-1} \quad \sigma\left\{H_{0}\left(\left[a_{1}|\ldots| a_{r-1}\right]\right) \cdot a_{r} \cdot a^{\prime \prime}{ }_{r+1}\right\} \quad .
\end{aligned}
$$

Both these formulas substituted give the desired form to $d_{A} H\left(\left[a_{1}|\ldots| a_{r}\right]\right)$.

Remark. The importance of lemma 2 is obviously that under certain conditions one expects the map H to commute with the differentials.

The map $H: \bar{B}(A) \rightarrow 2\left(A^{-1, *}\right)$ is not multiplicative as it stands. In order to make it multiplicative we must impose two additional axioms on the maps σ and h.

Suppose that for any $a, b \varepsilon A^{r}, r \geq 1$,
(11) $\sigma\{a\} \cdot \sigma\{b\}=\sigma\{h(a) \cdot b\}+(-1)(|a|-1)(|b|-1) \sigma\{h(b) \cdot a\}$,
(12) $h(a) \cdot h(b)=h(h(a) \cdot b)+(-1)(|a|-1)(|b|-1)_{h(h(b) \cdot a)}$.

From now on we assume that h, σ always satisfy these two additional properties. This leads to

Lemma 3. The map H is a morphism of GA-algebras
Proof. The multiplicativity of H is proved by induction in the following steps. First, from (12) it follows that
$H_{0}\left(\left[a_{r+2}\right]\right) \cdot H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right)=h\left(a_{r+2}\right) \cdot h\left(h\left(\ldots h\left(a_{1}\right) a_{2} \ldots a_{r}\right)=\right.$
$=\sum_{i=1}^{r+1}(-1){ }^{\left(\left|a_{1}\right|+\ldots+\left|a_{i-1}\right|-i+1\right) \cdot\left(\left|a_{r+2}\right|-1\right)}{ }_{H_{0}\left(\left[a_{1}|\ldots| a_{i-1}\left|a_{r+2}\right| a_{i}|\ldots| a_{r}\right]\right)}$
This gives
$H\left(\left[a_{1}|\ldots| a_{r+1}\right]\right) \cdot H\left(\left[a_{r+2}\right]\right)=\sigma\left\{H_{0}\left(\left[a_{1}|\ldots| a_{r}\right\}\right) \cdot a_{r+1}\right\} \cdot \sigma\left\{a_{r+2}\right\}=$
$=\sigma\left\{H\left(\left[a_{1}|\ldots| a_{r+1}\right]\right) \cdot a_{r+2}\right\}+$
$+(-1)^{\left(\left|a_{1}\right|+\ldots+\left|a_{r+1}\right|-r-1\right)\left(\left|a_{r+2}\right|-1\right)} \sigma\left\{H_{0}\left(\left[a_{r+2}\right]\right) \cdot H_{0}\left(\left[a_{1}|\ldots| a_{r}\right]\right) \cdot a_{r+1}\right\}$

And this, by the above formula for H_{0}, is equal to
$\sum_{i=2}(-1)\left(\left|a_{i}\right|+\ldots+\left|a_{r+1}\right|-r-i\right)\left(\left|a_{r+2}\right|-1\right){ }_{H}\left(\left[a_{1}|\ldots| a_{i-1}\left|a_{r+2}\right| a_{i}|\ldots| a_{r+1}\right]\right)=$ $i=1$
$=H\left(\left[a_{1}|\ldots| a_{r+1}\right] *\left[a_{I+2}\right]\right)$.

All this was cone by induction with respect to the number of elements in the first component of the *-product. Analogously, proceeding by induction with respect to the number of elements in the second component of the *-product we get
$H\left(\left[a_{1}|\ldots| a_{I}\right]\right) \cdot H\left(\left[a_{I+1}|\ldots| a_{I+s}\right]\right)=$

$$
=H\left(\left[a_{1}|\ldots| a_{r}\right] *\left\{a_{r+1}|\ldots| a_{r+s}\right]\right) .
$$

Remark. The formulas (11) and (12) are the algebraic versions of the Fubini theorem.

1.3 The Adams Theorem.

In this part we give a new proof of Chen's de Rham theorem [4] and also we suggest a different proof for the theorem of Adams [1], over k.

Let M be a differentiable manifold and $A *(M)$ the de Rham complex. We restrict ourselves to the manifold although the proof can be modified easily for the general case.

For any $a^{\prime} \varepsilon K_{n}(\Omega(M))$ represented by
$\alpha: I^{n} \rightarrow \Omega M, \hat{\alpha}: I^{n+1} \rightarrow M, \hat{\alpha}(x, t)=\alpha(x)(t)$, $x \varepsilon I^{n}=t \varepsilon I$ the $\operatorname{map} \hat{a}^{*}: A^{*}(M) \rightarrow A^{*}\left(I^{n+1}\right)$
induces the morphism of the differential Hopf algebras

$$
\hat{\alpha}^{*}: \bar{B}\left(A^{*}(M)\right) \rightarrow \bar{B}\left(A^{*}\left(I^{n+1}\right)\right) .
$$

Now, going back to the definition of H with $A=A^{*}\left(I^{n+1}\right), A^{-1, *}=A^{*}\left(I^{n}\right)$, we get the composition $\bar{B}\left(A^{*}(M)\right) \quad \hat{q}^{*} \bar{B}\left(A^{*}\left(I^{n+1}\right)\right) \quad$ H $A^{*}\left(I^{n}\right)$.

And now we define the map

$$
\begin{equation*}
\xi: \bar{B}\left(A^{*}(M)\right) \rightarrow A(\Omega(M)) . \tag{13}
\end{equation*}
$$

$\xi\left(\left[a_{1}|\ldots| a_{r}\right\}\right)(\alpha)=H \cdot \hat{\alpha}^{*}\left(\left[a_{1}|\ldots| a_{r}\right]\right)$.
Lemma 4. ξ is a morphism of DGA-algebras.
Proof. That ξ is a morphism of graded algebras follows immediately from the fact that $\hat{\alpha}^{*}$ is morphism of GA-algebras and from Lemma 3.

In order to establish that ξ commutes with the differentials we must show that for any $\alpha \varepsilon K_{n}(\Omega(M))$ and any form $w \in A^{*}(M)$ holds $\varepsilon_{A} \hat{a}^{*} w=0$. In order to do this we return back to algebra.

Suppose that we have a decomposition $L^{0}=k \Theta I^{0} / k$ such that $i(s)=s+0$ and that $d_{L}: 0 \oplus L^{0} / k \rightarrow L^{1}$ is an isomorphism. Under these conditions we can prove the following

Fact. $\varepsilon_{L} h_{L}=0$ on L^{1}.
Proof. For any $\ell \varepsilon L^{1}, h_{L}(l)=l_{1}+l_{2} \varepsilon \mathrm{k} \oplus I^{0} / \mathrm{k}$. Thus $\varepsilon_{L} h_{L}(l)=\varepsilon_{L}\left(\ell_{1}\right)+\varepsilon_{L}\left(\ell_{2}\right)=\ell_{1}+\varepsilon_{L}\left(\ell_{2}\right)$, and

$$
\begin{aligned}
i \varepsilon_{I}\left(l_{2}\right) & =-h_{L} d_{L}\left(\ell_{2}\right)+\ell_{2}, \text { and } \\
\varepsilon_{I} i \varepsilon_{L}\left(l_{2}\right) & =-\varepsilon_{L} h_{I} d_{I}\left(l_{2}\right)+\varepsilon_{L}\left(\ell_{2}\right) .
\end{aligned}
$$

Because $\varepsilon_{L} i=$ identity we get $\varepsilon_{L}\left(\ell_{2}\right)=-\varepsilon_{L} h_{L} \exists_{L}\left(\ell_{2}\right)+$ $+\varepsilon_{L}\left(\ell_{2}\right)$, therefore $\varepsilon_{L} h_{L}\left(d_{L}\left(\ell_{2}\right)\right)=0$. And because d_{L} is an isomorphism, we get $\varepsilon_{L} h_{L}=0$. Q.E.D. Because in our case $I^{0}=A^{0}\left(s^{1}\right), s^{1}$ with the base point $s_{0}, A^{0}\left(S^{1}\right) \mid s_{0}=k$ and $L^{0}=k \oplus A^{0}\left(S^{1}\right) / k$. By our definition $v\left(\tilde{A}^{O}, \Sigma^{\prime}\right)=L^{0} \otimes V^{r}=$

$$
\begin{aligned}
& =\left(k \otimes v^{r}\right) \oplus\left(A^{0}\left(s^{1}\right) / k \otimes v^{r}\right)= \\
& =A_{1}^{0, r} \oplus A_{2}^{0, r} \text { with the obvious notation. }
\end{aligned}
$$

The augmentation $\varepsilon \underset{A}{ } \equiv 0$ on $\hat{\mathbb{A}}_{2}^{0}, r$ by the above observation. Recall that $\tilde{A}^{0, r} \subset A^{I}\left(I^{n} \times s^{1}\right)$. Then $\widetilde{\mathrm{A}}_{1}, \Sigma=$ the r-forms in the x variables which are constant functions in the t variable, and $\tilde{A}_{2}^{0, r}=$ the r-forms in the x variables that vanish at the points $\left(x, s_{0}\right), s_{0}=$ the base point of s^{1}.

Now, for any $\alpha \in K_{n}(\Omega(M))$ the map $\hat{\alpha}: I^{n+1} \rightarrow M$ has the property $\hat{\alpha}(x, 0)=\hat{\alpha}(x, 1)=*$. Thus for any $w \in A^{*}(M), \hat{\alpha}^{*} w\left|(x, 0)=\hat{\alpha}^{*} w\right|(x, 1)=0$. Therefore $\hat{\alpha}^{*} W \varepsilon \tilde{A}_{2}^{0} r$, and finally $\varepsilon_{A} \hat{\alpha}^{*}{ }_{W}=0$. This implies that for $\alpha \varepsilon K_{n}(\Omega(M))$ all the terms involving $i \varepsilon \lambda^{\prime \prime}$ in the formula from lemma 2 , where $a_{j}=\hat{\alpha}^{*} w_{j *}$ for $w_{j} \varepsilon_{\hat{n}_{*}}{ }^{*}(M)$, vanish. The last $\operatorname{term} \sigma d_{A}\left(H_{0}\left(\left[\hat{\alpha}^{*} w_{1}|\ldots| \hat{\alpha}^{*} w_{r}\right]\right) \cdot \hat{\alpha}^{*} W_{r+1}\right)=0$ simply because $H_{0}\left(\left[\hat{\alpha}^{*} w_{1}|\ldots| \hat{\alpha}^{*} w_{I}\right]\right) \cdot \hat{\alpha}^{*} w_{r+1}$ belongs to $v(\tilde{A})$, by (8).

Remark. Because 5 is morphism of graded algebras which commutes with the differentials, the image $\bar{\xi}\left(\bar{B}\left(A^{*}(M)\right)\right.$ in $A(\Omega(M))$ is also a DGAalgebra.

Let $\left[w_{1}|\ldots| w_{r}\right\} \in \bar{B}\left(A^{*}(M)\right)$, where w_{1}, \ldots, w_{r} are differential forms on M of degree ≥ 1. Then $\xi\left(\left[w_{1}|\ldots| w_{r}\right]\right)$ is the element $\int w_{1} \ldots w_{r}$ in Chen's notation [4].

Definition. The algebra $C=C\left(\Omega(M), A^{*}(M)\right)=$ $=\xi\left(E\left(A^{*}(M)\right)\right.$ is the algebra of iterated integrals (of the first kind).

We define the filtration $\left\{F_{Y} C\right\}, k=F_{0} C \subset F_{I} C \subset \ldots$
... $C F_{r} C=C$ of the Hopf algebra of iterated integrals C by
$F_{r} C=\left\{\xi\left(\left[a_{1}|\ldots| a_{s}\right]\right) \mid a_{i} \varepsilon A^{p}(M), p \geq 1,0 \leq s \leq r\right\}$, $F_{r} C=0, r<0$. From the definition $c f$ the differential in C it is clear that $d\left(F_{r} C\right) \subset F_{r} C$.

The filtration of the bar construction, as it is defined in S. MacLane "Homotopy" D.309, $F_{r}=F_{r}{ }^{B}\left(A^{*}(M)\right)=$ the submodule spanned by the elements $\left[a_{1}|\ldots| a_{s}\right], a_{i} \varepsilon A^{p}(M), p \geq 1,0 \leq s \leq=$. $F_{I}=0$ for $=<0$. And from the formulas defining
the differential ∂ in $B\left(A^{*}(M)\right)$ we get immediately $\partial\left(F_{r}\right) \subset F_{r}$.

It turns out that for the comparison of the spectral sequences of these two filtrations it is more suitable to replace the DGA-algebra $A^{*}(M)$ by somewhat smaller algebra with the same cohomology. Namely, let

$$
\bar{A}^{0}(M)=A^{1}(M) / d A^{0}(M), \bar{A}^{k}(M)=A^{k+1}(M), k \geq 1 .
$$

Then we define the filtration $\bar{F}_{r}=F_{r} \bar{B}\left(\bar{A}^{*}(M)\right), r \geq 0$. The surjection $\pi: A^{*}(M) \rightarrow \bar{A}^{*}(M)$ gives the surjective maps $\pi: F_{I} \rightarrow \vec{F}_{r}, r \geq 0$, and $\pi: F_{r} / F_{r-i} \rightarrow$ $-\bar{F}_{r} / \bar{F}_{r-1}$.

The DGA-algebra morohism ξ (13) induces the map

$$
F \xi: F_{I} / F_{I-1} \rightarrow F_{I} C / F_{I-1} C \text {. }
$$

In fact we get

Proposition 3. The map FF factorizes through $\bar{F}_{r} / \bar{F}_{r-1}$ so that the following diagram is commatative

Proof. It is enough to show that $a_{i}=d a$, $a \varepsilon A^{0}(M),\left[a_{1}|\ldots| a_{i-1}|d a| a_{i+1}|\ldots| a_{r}\right] \varepsilon F_{r}$ but $\not \subset F_{r-1}$ the image $\xi\left(\left[a_{1}|\ldots| d a|\ldots| a_{r}\right]\right) \varepsilon F_{r-1} C$.

For many $\alpha \in K_{n}(\Omega(M)), \hat{\alpha}: I^{n} \times I \rightarrow M$,
a $\varepsilon A^{*}(M)$ denote $\hat{\alpha}^{*} a=c$. Then $\xi\left(\left[a_{I}|\ldots| d a|\ldots| a_{r}\right]\right)(\alpha)=$ H• $\hat{\alpha}^{*}\left(\left[a_{1}|\ldots| a_{A} a|\ldots| a_{I}\right]\right)=$
$= \begin{cases}\sigma\left\{H_{0}\left(\left[c_{1}|\ldots| d_{A} c_{i}|\ldots| c_{r-1}\right]\right) \cdot c_{r}\right\} & \text { for } 1 \leq i<r, \\ \sigma\left\{H_{0}\left(\left[c_{1} \ldots c_{r-1}\right]\right) \cdot d_{A} c_{i}\right\} & \text { for } i=r,\end{cases}$
where $d_{A}=d_{A}{ }^{\prime}+d_{A}^{\prime \prime}$ is the differential in $A^{*}\left(I^{n+1}\right)$. In the case $1<i<r$ we have, where the signs are ommitted as they turn out to be irrelevant,
$H_{0}\left(\left[c_{1}|\ldots| d_{A} c|\ldots| c_{r-1}\right]\right)=$
$=(-1)^{\circ} h d_{A}\left[h\left(\ldots h\left(c_{1}\right) \ldots c_{i-1}\right) \cdot c\right]+$
$+(-1)^{\circ} h\left[d_{A} h\left(\ldots h\left(c_{1}\right) \ldots c_{i-1}\right) \cdot c\right]=$
$=(-1)^{\bullet} h\left(\ldots h\left(c_{1}\right) \ldots c_{i-1}\right) \cdot c+(-1)^{0} d_{A}{ }^{n} h\left\{h\left(\ldots h\left(c_{1}\right) \ldots c_{i-1}\right) \cdot c j\right.$
$+(-1)^{\bullet}\left\{\varepsilon_{A}\left\{h\left(\ldots h\left(c_{1}\right) \ldots c_{i-1}\right) \cdot c\right\}+\right.$
$+(-1)^{\cdot} h\left\{h\left(\ldots h\left(c_{1}\right) \ldots c_{i-2}\right) \cdot c_{i-1} \cdot c\right\}+$
$+(-1)^{\bullet} h\left[h\left\{d_{A}^{n}\left(h\left(\ldots h\left(c_{1}\right) \ldots\right) c_{i-1}\right\} \cdot c\right]\right.$.
Because α maps I^{n} into the loop space the $3^{r d}$ term is zero, and because a $\varepsilon A^{0}(M)$ the $2^{\text {nd }}$ and the $5^{\text {th }}$ terms are zero. Therefore we get
$\sigma\left\{H_{0}\left(\left[c_{1}|\ldots| d_{A} c|\ldots| c_{x_{-1}}\right]\right) \cdot c_{r}\right\}=$
$=(-1) c\left\{H_{0}\left(\left[c_{1}|\ldots| c_{i-1}\left|c \cdot c_{i+1}\right| c_{i+2}|\ldots| c_{I-1}\right]\right) \cdot c_{I}\right\}+$
$+(-1)^{\circ} \sigma\left\{H_{0}\left(\left[c_{1}|\ldots| c_{i-1} \cdot c\left|c_{i+1}\right| \ldots \mid c_{r-1}\right]\right) \cdot c_{r}\right\}=$
$=(-1)^{\bullet} \xi\left(\left[a_{1}|\ldots| a_{i-1}\left|a \cdot a_{i+1}\right| \ldots \mid a_{r}\right]\right)(\alpha)+$
$+(-1)^{2} \xi\left(\left[a_{1}|\ldots| a_{i-1} \cdot a\left|a_{i+1}\right| \ldots \mid a_{r}\right]\right)(\alpha)$
which is equal to $\xi\left(\left[a_{1}|\ldots|\right.\right.$ a $\left.\left.|\ldots| a_{I}\right]\right)(\alpha)$ for
every $\alpha \varepsilon K_{n}(\Omega(M))$. Hence we have shown that for $1<i<r, \xi\left(\left[a_{1}|\ldots| d a|\ldots| a_{r}\right]\right) \varepsilon F_{r-1} C$.

A similiar argument works for $i=1, r$.
Proposition 4. If M is path connected then
$\bar{F} \xi: \bar{F}_{I} / \bar{F}_{r-1} \longrightarrow F_{r} C / F_{I-1} C$
is bijective.
proof. Let $\alpha_{j}^{\prime}: I^{d_{j}} \rightarrow \Omega(M)$ be the map associated with the element $\alpha_{j} \varepsilon K_{d_{j}}(\Omega(M))$, $j=1,2, \ldots, n$.

For each element $\left[a_{1}|\ldots| a_{n}\right]$ representing a class in $\bar{F}_{n} / \vec{F}_{n-1}, a_{j} \varepsilon \bar{A}_{j}$, we define an n-linear $\operatorname{map} b_{a_{1} \ldots a_{n}}$ on the singular cubic chains $\alpha_{1}, \ldots, a_{n}$ by

$$
b_{a_{1}} \ldots a_{n}\left(\alpha_{1}, \ldots, a_{n}\right)=\left(\int_{a_{1}+1} \hat{a}_{1}^{*} a_{1}\right) \bullet \ldots\left(\int_{I}^{a_{n}+1} \hat{a}_{n}^{*} a_{n}\right)
$$

where the integration is taken over the oriented cubes in the euclidean space and where stands for the usual product in R.

It is easy to see that the maps $b_{a_{1}} \ldots a_{n}$ span
the space of all n-linear maps $I_{n}\left(K_{*}(\Omega(M))\right.$ from $K_{*}(\Omega(M))$ into R.

For a q-cube $\alpha: I^{q} \rightarrow \Omega(M)$ we define the reduced cube

$$
\tilde{\alpha}= \begin{cases}\alpha & \text { for } q>0 \\ \alpha-\varepsilon & \text { for } q=0\end{cases}
$$

where $\varepsilon: I^{0} \rightarrow *$ is the null loop.

Thus we have a monomorphism

$$
\gamma_{n}: \bar{F}_{n} / \bar{F}_{n-1} \rightarrow L_{n}\left(K_{*}(\Omega(M))\right.
$$

On the other hand, any element in $F_{n} C / F_{n-1} C$ can be represented in the form $\xi\left(\left[a_{1}|\ldots| a_{n}\right]\right)+$ terms of lower dimension; $a_{j} \varepsilon A^{*}(M)$. And the evaluation of the element $\xi\left(\left[a_{1}|\ldots| a_{n}\right]\right)+\ldots$ in $A^{*}(\Omega(M))$ on the sequence of reduced cubes $\alpha_{1} \ldots \ldots \alpha_{n} ; \alpha_{j} \varepsilon K_{*}(\Omega(M))$ via integration give a map

$$
\eta_{n}: F_{n} C / F_{n-1} C \rightarrow L_{n}\left(K_{*}(\Omega(M))\right.
$$

such that

$$
\left.\eta_{n}\left(\xi\left(\left[a_{1}|\ldots| a_{n}\right]\right)+\ldots\right)=b_{\left[a_{1}\right.}|\ldots| a_{n}\right]
$$

From the construction we see that γ_{n} is a monomorphism. The map λ_{n} is the diagram

is injective, as follows by induction. And finally we see that $\eta_{n}\left(F_{n} C / F_{n-1} C\right)=\gamma_{n}\left(F_{n} / F_{n-1}\right) \quad$ This proves that λ_{n} is bijective.

Lemma 5. The homomorphism $\xi: \bar{B}\left(A^{*}(M)\right) \rightarrow C$ of DGA-algebras induces an isomorphism of the cohomologies.

Proof. Because the cohomology of $\bar{B}\left(A^{*}(M)\right)$ is isomorphic to that of $\overline{\mathrm{B}}\left(\overline{\mathrm{A}}^{*}(\mathrm{M})\right)$ and the bijective map $\bar{F} \xi$ induces an isomorphism of the spectral sequences already on the E_{1}-level, we get the statement.

From the last lemma and from the theorem of Adams [1], using the pairing of the bar and cobar constructions, we get

Theorem 2 (Chen). Let M be a connected and simply connected differentiable manifold, and let $A^{*}(M)$ be the de Rham complex of M with a finite cohomology. Then there is an isomorphism

$$
H^{*}(\Omega(M) ; k) \cong H^{*}(C ; k)
$$

of the singular cohomology of $\Omega(M)$ with the homology of the DGA-algebra of iterated integrals on M.

Remark. The statement of the theorem is not the most general possible. The formulation of this
theorem for a topological space M, with the correct limitations can be found in [6]. Our proof works for that case as well. In fact our proof, being algebraic, goes through without change even for $k=Q$, while the original proof depends heavily on the differential forms over R or C.

A slight modification of our definitions makes the statement of the theorem correct even when $k=Z$. In that case $A^{*}(M)$ is the de Rham complex with integral coefficients [4].

On the other hand the algebra of the iterated integrals can be used to prove the theorem of Adams. From the recent work of Cartan [8] and watkis [2] we know that the cohomology of $A(\Omega(M))$ with the coefficients $k=R, Q, C$ (or even 2 , with the correct interpretation of the functor A) is isomorphic to the cubic singular cohomology of $\Omega(M)$. On the other hand the algebra of the iterated integrals C is a DGA subalgebra of $A(\Omega(M))$. It turns out that for a connected and simply connected manifold M there is an inverse map $\eta: A(\Omega(M)) \rightarrow C$ which is a quasiisomorphism of DGA algebras. Thus, by using the pairing of bar and cobar construction, or equivalently the pairing of C with the bar construction we have an independent proof of the theorem of Adams [1].

Because the cohomology of the commutative DGA-algebra $\bar{B}\left(A^{*}(M)\right)$ (with respect to the *-product) is isomorphic with the cohomology of $\Omega(M)$ we can iterate the whole process. Namely, there is well defined DGA-algebra morphism

$$
\xi_{2}: \bar{B}\left(\bar{B}\left(A^{*}(M)\right) \rightarrow A\left(\Omega^{2}(M)\right) .\right.
$$

And in general a DGA-algebra morphism

$$
\xi_{n}: \bar{B}_{n}\left(A^{*}(M)\right)=\underbrace{\bar{B}\left(\ldots\left(\bar{B}\left(A^{*}(M)\right) \ldots\right) \rightarrow A\left(\Omega^{n}(M)\right) .\right.}_{n-\text { times }}
$$

The image $C_{n}=\xi_{n}\left(\bar{B}_{n}\left(A^{*}(M)\right)\right.$ in $A\left(\Omega^{n}(M)\right)$ is the algebra of iterated integrals of the n-th kind.

De Rham theorem for the fundamental group and homotopy periods We recall the construction of the minimal model
[12] M for the fundamental group $G=\pi_{1}(M)$ of a CWcomplex M. Then a map T from the differential graded algebra M to a commutative DG-algebra $A^{*}(M)$ over $k=C, R$ or Q is constructed. This map is an extension of the parallel transport defined by Chen [4]. This map T is then used in the proof of the de Rham theorem for the group Γ. As a by-product we get all the homotopy invariants, called homotopy periods in [7]
of the pointed map of S^{1} into M.

2.1 Minimal model

The lower central series for the fundanental group $G_{1}=G=\pi_{1}(M)$ of a $C W$ complex M is the system of groups

$$
G_{1}=G \perp G_{2} \supset G_{3} \supset \ldots, G_{n+1}=\left[G_{1} G_{n}\right]
$$

where G_{n} / G_{n+1} is the center of G / G_{n+1}, and $0 \rightarrow G_{n} / G_{n+1} \rightarrow G^{(n+1)} \rightarrow G^{(n)} \rightarrow 1, G^{(n)}=G / G_{n}$, is the central extension. To the lower central series corresponds the tower of nilpotent quotients

$$
G^{(2)} \leftarrow G^{(3)} \leftarrow G^{(4)} \leftarrow \ldots
$$

and the Postnikov tower of Eilenberg-MacLane spaces

$$
K\left(G^{(2)}, 1\right) \leftarrow K\left(G^{(3)}, 1\right) \leftarrow K\left(G^{(n)}, 1\right) \leftarrow \ldots
$$

With each of these CW complexes we associate the k-vector space $\left.A^{*}\left(K_{G}(\Omega), 1\right)\right)$ of differential forms. Then with the Postnikov tower there is associated the system of compatible DG-algebras

$$
\left.A^{*}\left(K\left(G^{(2)}, 1\right)\right) \rightarrow A^{*} K\left(G^{(3)}, 1\right)\right) \rightarrow \ldots
$$

Let

$$
\rho^{(n)}:(n)^{M^{*}} \rightarrow A^{*}\left(K\left(G^{(n+1)}, 1\right)\right), n \geq 1
$$

be the minimal model for the DG-algebra $A^{*}\left(K\left(G^{(n+1)}, 1\right)\right)$.

The maps $\rho^{(n)}$ are grated algebra morphisms commuting with the differentials.

The algebraic version of the serre spectral
sequence of the fibration

$$
K\left(G_{n} / G_{n+1}, 1\right) \rightarrow K\left(G^{(n+1)}, 1\right) \rightarrow K\left(G^{(n)}, 1\right)
$$

gives us a complete description of the minimal model

$$
M^{*}=\lim _{(n)} M^{*}
$$

of the limit

$$
\lim A^{*}\left(K\left(G^{(n)}, 1\right)\right.
$$

(1) M^{*} is a free, over k, algebra generated by the elements $\alpha_{i}^{(1)}$ of the basis $\alpha_{1}^{(1)}, \ldots, \alpha_{k_{1}}^{(1)}$ for $H^{1}\left(K\left(G^{(2)}, 1\right) ; k\right) \cong H^{1}\left(A^{*}\left(K\left(G^{(2)}, 1\right)\right) \cong \operatorname{Hom}\left(G^{(2)}, k\right)\right.$. The differential d in (1) M^{*} is defined by $d \alpha_{i}^{(1)}=0$. Because $d_{i}^{(l)}$ is one-dimensional, (1) M^{*} is the exterior algebra on the generators $\alpha_{1}^{(1)}, \ldots, \alpha_{k_{1}}^{(1)}$.

Next recall, that there is an injective transgression map

$$
T: H^{1}\left(K\left(G_{n} / G_{n+1}, 1\right) ; W\right) \rightarrow H^{2}\left(K\left(G^{(n)}, 1\right) ; W\right)
$$

for any abelian group W. If $\left(\varepsilon H^{l}\left(K\left(G_{n} / G_{n+1}, 1\right) ; G_{n} / G_{n+1}\right)=\right.$ $=\operatorname{Hom}\left(G_{n} / G_{n+1}, G_{n} / G_{n+1}\right)$ is the identity element, then
$\tau(1) \varepsilon H^{2}\left(K\left(G^{(n)}, 1\right) ; G_{n} / G_{n+1}\right)$ as a map $\tau(1): K\left(G^{(n)}, 1\right) \rightarrow$ $\rightarrow K\left(G_{n} / G_{n+1}, 2\right)$ defines $K\left(G^{(n+1)}, 1\right)$ by the full-back of the path space

$$
P K\left(G_{n} / G_{n+1}, 2\right)_{-} \rightarrow K\left(G_{n} / G_{n+1}, 2\right)
$$

This allows us to define the next stage of the minimal model.
(2) M^{*} is simply the extension (1) $M^{*}\left[\alpha_{1}^{(2)}, \ldots, \alpha_{k_{2}}^{(2)}\right]$ when we adjoin to (1) $\|^{*}$ the generators $\alpha_{i}^{(2)}$, where $\alpha_{1}^{(2)}, \ldots, \alpha_{k_{2}}^{(2)}$ is the basis for $H^{1}\left(K\left(G_{2} / G_{3}\right) ; k\right)$. This basis is determined by the one forms $a_{1}^{(2)}, \ldots, a_{k_{2}}^{(2)}$ in $A^{1}\left(K\left(G^{(3)}, 1\right)\right)$. These forms can be chosen in such a way that $d a_{i}^{(2)}=0^{(1)}\left(B_{i}^{(1)}\right) \varepsilon A^{2}\left(K\left(G^{(2)}, 1\right)\right)$, where $B_{i}^{(1)}$ are in (1) M^{2} and $\rho^{(1)}\left(S_{i}^{(1)}\right)$ represents $\tau\left(\alpha \alpha_{i}^{(2)}\right)$ in $H^{2}\left(\mathrm{~K}\left(\mathrm{G}^{(1)}, 1\right) ; \mathrm{K}\right)$. The elements B_{1} are linear combinations of products of elements from (1) " *. The differential in $(2)^{M^{*}}$ is defined by $d a_{i}^{(2)}=B_{i}^{(1)}$. And the map $\rho^{(2)}:(2)^{H *} \rightarrow A^{*}\left(K\left(G^{(3)}, 1\right)\right)$ is the extension of $\rho^{(1)}$ defined by sending

$$
\rho^{(2)}: \alpha_{i}^{(2)} \rightarrow \alpha_{i}^{(2)}
$$

The construction of $(n)^{\mu^{*}}$ proceeds by induction. Therefore we can summarise, and state

Proposition 5. The tower of nilpotent quotients gives, over k, the tower of minimal models
(I) M
(2) M
(3)
$\rho^{(1)} \downarrow$
$0^{(2)} \downarrow$
$o^{(3)} \downarrow$
$A^{*}(\mathrm{~K}(\mathrm{G}$
(2)
,1) $) \rightarrow A^{*}(K(G)$
(3)
, 1) $) \rightarrow A^{*}\left(K\left(G^{(4)}\right.\right.$
1)) \rightarrow.
where

$$
(n) M^{*}=\Lambda\left(\alpha_{1}^{(1)}, \ldots, \alpha_{k_{1}}^{(1)}, \ldots, \alpha_{1}^{(n)} \ldots \ldots \alpha_{k_{n}^{(n)}}^{(n)}\right.
$$

is the exterior algebra on the generators, with the differential

$$
d_{\alpha_{i}}^{(k)}=\beta_{i}^{(k-1)}
$$

Let $L_{n}=\left[(\Omega) M^{*}\right]^{*}$ be the dual of the differential graded algebra. (n) M^{*} beina minimal generated by elements in degree 1 implies that L_{n} is nilpotent Lie algebra, with the bracket defined as a dual of the differential. Thus the tower of minimal models determines the tower of nilpotent Lie algebras

$$
0+L_{1}+L_{2}+L_{3}+\ldots
$$

Let M be a CW complex with the fundamental group $G=\pi_{1}(M)$. To be specific, we take for example $M=K(G, 1)$. Then we have the Postnikov tcwer

```
K(G,l)
P}\mp@subsup{2}{}{\downarrow}\quad\mp@subsup{P}{3}{}
K(G(2)},1)<K(\mp@subsup{G}{}{(3)},1)<
```

where the maps p_{n} are given by the projections $G \rightarrow G / G_{n}=G^{(n)}$. With this diagram is associated the system of commutative DG-algebras. In particular we get the maps

$$
(n) M^{1} \xrightarrow{\rho^{(n)}} A^{1}\left(K\left(G^{(n+1)}, 1\right)\right) \xrightarrow{p_{n+1}^{*}} A^{1}(M)
$$

The composition $(n)^{\tilde{\omega}}=p_{n+1}^{*} \cdot \rho^{(n)}$ extends to the morphism of DG-algebras

$$
(n)^{\tilde{\omega}}:(n)^{M^{*}} \rightarrow A^{*}(M)
$$

and in the limit we $\operatorname{aet} \tilde{\omega}=\lim (n) \tilde{\omega}: M^{*} \rightarrow A^{*}(M)$. For each n the map $(n){ }^{\sim}{ }^{\sim}$ defines a unique element

$$
(n)^{\omega} \varepsilon A^{*}(M) 区 L_{n} .
$$

and

$$
\omega=\lim (n)^{\omega} \varepsilon A^{*}(M) \otimes L, L=\lim L_{n} .
$$

Remark. The element ω viewed as an L-valued form on M is a special case of a power series connection studied by Chen [4]. In the terminology of [4] this is a flat connection because as a map it comnutes with the differentials.

2.2 Homotopy periods

The differential of the generator $\alpha_{i}^{(k)}$ of $(k) H^{1}$ is the element $d \alpha_{i}^{(k)}=\beta_{i}^{(k-1)} \varepsilon_{(k-1)} M^{2}$. But
$(k-1) M^{*}$ is a free algebra on the generators
$\left(\alpha_{1}^{(1)}, \ldots, \alpha_{k_{k-1}}^{(k-1)}\right)$. Therefore $\beta_{i}^{(k-1)}$ is the sum of products of generators from $(k-1)^{M^{*}}$. Take those $\alpha^{(k-1)}$'s that occure in $\beta_{i}^{(k-1)}$, and take the differentials $d \alpha_{j}^{(k-1)}=\beta_{j}^{(k-2)}$ again. Then consider all the $\alpha_{r}^{(k-2)}$'s in $\beta_{j}^{(k-2)}$ etc. The system of all these $\alpha_{j}^{(k-1)}, \alpha_{r}^{(k-2)}$, etc is called the pyramid of the generator $\alpha_{i}^{(k)}$. Note that such a pyramid is uniquelly determined by each $\alpha_{i}^{(k)} \varepsilon(k) M^{l}$. We denote the pyramid associated with $\alpha_{i}^{(k)}$ by $P\left(\alpha_{i}^{(k)}\right)$.

In order to give a more formal definition of the pyramid $P\left(\alpha_{i}^{(k)}\right)$, we first of all observe that $\alpha_{i}^{(k)}$ is an element in some defining system for a matrix Massey products.

Let $\left(W_{1}, \ldots, W_{m}\right)$ be a system of matrices with the following two properties:
(i) The entries of the matrix W_{r} are the elements of a subset of the generators $\left(\alpha_{1}^{(1)}, \ldots, \alpha_{k_{1}}^{(1)}\right)$ for (1) M^{*}.
(ii) The products of the matrices $W_{i} W_{i+1}$ is defined for $i=1,2, \ldots, m-1$.

Let us denote by v_{i} the matrix of the cohomology classes determined by W_{i}. We assume that ${ }{ }_{i} V_{i+1}=0$ for $i=1,2, \ldots, m-1$. Then denote W_{i} by $A_{i-1, i}$ and define inductively the matrices
$A_{i j}$ by the relations $0=A_{i j}+\sum_{k=i+1}^{j-1} A_{i k} A_{k j}, \quad l<j-i<m$
and so that $A_{i j}, j-i=n$, has as its entries only the generators from the set

$$
\alpha_{1}^{(n)}, \ldots, \alpha_{k_{n}}^{(n)}
$$

Then the system of all the matrices $A_{i j}, 0 \leq i<j \leq n$, $(i, j) \neq(0, m)$ is called the defining system for the matrix Massey product $\left\langle\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{m}}\right\rangle$. It can be put into the form of upper trianglular block matrix

$$
A=\left(\begin{array}{cccccc}
0 & A_{01} & A_{02} & \cdots & A_{0 m-1} & * \\
& 0 & { }^{A_{12}} & & A_{1 m-1} & { }^{A_{1 m}} \\
& & 0 & & & \\
& & & & & A_{m-1} m \\
0 & & & 0 & 0
\end{array}\right)
$$

For more details we refer to [5].
Definition. A pyramid $P\left(A_{r s}\right)$ of the matrix $A_{r s}$ from the defining system A, is the system of matrices $A_{i j}, r \leq i<j \leq s$.

Observe that the pyramid $P\left(A_{r s}\right)$ is closed with respect to the relations

$$
\begin{equation*}
d A_{i j}+\sum_{k=i+1}^{j-1} A_{i k} A_{k j}=0, r \leq i<j \leq s . \tag{14}
\end{equation*}
$$

In fact the system of matrices $A_{i j}, r<i<j<s$
is a defining system for the matrix Massey product $\left\langle\mathrm{V}_{E}, V_{r+1}, \ldots, V_{s}\right\rangle$.

Definition. A pyramid $p\left(a_{r s}\right)$ of the entry $a_{r s}$ of the matrix $A_{r s}$, from the defining system A, is the set of elements from the matrices $A_{i j}, r \leq i<j \leq s$, which is closed under therelations (14). The element ars is called the vertex of $P\left(a_{r s}\right)$.

If all the matrices $A_{i j}$ in A are one by one matrices then we have the defining system for the "ordinary" Massey product $\left\langle V_{1}, \ldots, V_{m}\right\rangle$.

Summarising the above discussion in terms of the introduced terminology we have

Proposition 6. Each element $\alpha_{i}^{(k)} \varepsilon(k) M^{l}$ is a vertex of a pyramid $P\left(\alpha_{i}^{(k)}\right.$, associated with some defining system A for the matriz Massey products.

Let $M E$ be the set of square matrices with entries in a graded k-module E. Then for any two matrices $A, B \in M E$, such that the product $A B$ is defined, we define A. $\underset{\sim}{x}$ to be a matrix with the entries from $E \mathrm{E}$. The multiplication in $\mathrm{A} \widehat{\mathrm{x}} \mathrm{B}$ is qiven by the multiplication of matrices.

From the elements in the pyramid $P\left(A_{r s}\right)$ we construct inductively the following objects, thought of as polynomials in the elements of $P\left(A_{r s}\right)$.

$$
A_{i}^{(2)}=A_{i+2}+A_{i+2} \otimes A_{i+1} \quad 1+2
$$

for $r \leq i<s-1$,

$$
\begin{aligned}
A_{i}^{(3)}= & A_{i+3}+A_{i+1} \hat{\otimes} A_{i+1} i+3+ \\
& +A_{i}^{(2)} \text { 囚 } A_{i+2} i+3
\end{aligned}
$$

for $r \leq i<s-2$. And in general

$$
\begin{aligned}
A_{i}^{(n)} & =A_{i+n} i+n \\
& +\sum_{i=2}^{n-2} A_{i+1}^{(k)} \otimes A_{i+1} i+n+ \\
& +A_{i}^{(n-1)} \text { (n+1 } A_{k+i} \text { ® } A_{i+n-1} i+n
\end{aligned}
$$

for $r \leq i<s-n+1$ and for $2 \leq n \leq s-r$. The successive substitutions give an element

$$
I\left(A_{r s}\right)=A \underset{r s}{(r-s)} .
$$

We call this element the polynomial of the pyramid $P\left(A_{r s}\right)$ or simply the polynomial of $A_{r s}$. And if we trace an individual element we get the polynomial $I\left(a_{r s}\right)$ of the element $a_{r s}$ of the matrix $A_{r s}$, or the polynomial of the pyramid $P\left(a_{r s}\right)$.

In particular it makes sense to talk about the polynomial $I\left(\alpha_{i}^{(n)}\right)$ associated with the element $\alpha_{i}^{(n)} \varepsilon(n) \|^{l}$. Obviously $I\left(\alpha_{i}^{(n)}\right.$) belongs to the tensor algebra of $H^{1}, T N^{1}$.

The polynomial $I\left(A_{r s}\right)$ is well defined for a pyramid constructed with entries from any DG-algebra. In particular, from the algebra $A^{*}(M)$. And if for $\omega_{1}, \omega_{2} \varepsilon A^{l}(M)$ the tensor product $\omega_{1} \otimes \omega_{2}$ is denoted by $\left[\omega_{1} \mid \omega_{2}\right]$ and the single element $\omega \in A^{l}(M)$ by [w] with the grading from the bar construction, then we can define for each $\alpha_{i}^{(n)} \varepsilon(n) M^{1}$,

$$
\omega_{i}^{(n)}=\rho^{(n)} \cdot p_{n}^{*} \alpha_{i}^{(n)}
$$

as an element in $A^{l}(M)$; and $I\left(\omega_{i}^{(n)}\right) \varepsilon \bar{B}\left(A^{*}(M)\right)$.
The ξ-image of $I\left(\omega_{i}^{(n)}\right)_{r}$

$$
\Omega\left(\alpha_{i}^{(n)}\right)=\xi\left(I\left(\omega_{i}^{(n)}\right)\right) \varepsilon c^{0} .
$$

Let $\left(x_{1}^{(1)}, \ldots, x_{k_{1}}^{(1)}, \ldots, x_{1}^{(n)}, \ldots, x_{k_{n}^{(n)}}^{(n)}\right.$) be the generators for I_{n}, dual to $\left(\alpha_{1}^{(1)}, \ldots, \alpha_{k_{n}^{(1)}}^{(1)^{n}}\right.$.

Proposition 7.

$$
T=1+\Sigma \Omega\left(\alpha_{i}^{(n)}\right) \cdot X_{i}^{(n)}
$$

where the summation goes over all the generators of M^{*}, is an element of

$$
c^{0} \otimes L
$$

Example. Let $M=V S^{l}$ be the wedge of n circies. Then the fundamental group $G=\pi_{1}(M)$ is a free group, over k, on n l-dimensional generators. The n-th stage of the minimal model $(n) M^{*}$ for $K\left(G^{(n)}, 1\right)$ is the free
algebra $k\left(\alpha_{1}, \ldots, \alpha_{n} ; \alpha_{i j} ; \ldots, \alpha_{i_{1}} \ldots i_{i_{n}}\right)$, where the generators α satisfy

$$
d \alpha_{i j}+\alpha_{i} \alpha_{j}=0, d \alpha_{i j k}+\alpha_{i} \alpha_{j k}+\alpha_{i j} \alpha_{k}=0, \text { etc. }
$$

Let $\left(X_{1}, \ldots, X_{n}, X_{i j}, \ldots, X_{i_{1}} \ldots i_{n}\right)$ be the dual generators for L_{n}.

$$
\begin{aligned}
I\left(\alpha_{i j}\right)= & \alpha_{i j}+\alpha_{i} \otimes \alpha_{j} \\
I\left(\alpha_{i j \varepsilon}\right) & =\alpha_{i j k}+\alpha_{i} \otimes \alpha_{j k}+\alpha_{i j} \otimes \alpha_{k}+ \\
& +\alpha_{i} \otimes \alpha_{j} \otimes \alpha_{k}, \text { etc. }
\end{aligned}
$$

and

$$
\begin{aligned}
T & =1+\Sigma \xi\left(\left[\omega_{i}\right]\right)+\sum \xi\left(\left[\omega_{i j}\right]+\left[\omega_{i} \mid \omega_{j}\right]\right) x_{i j}+ \\
& +\Sigma \xi\left(\left[\omega_{i j k}\right]+\left[\omega_{i} \mid \omega_{j k}\right]+\left[\omega_{i j} \mid \omega_{k}\right]+\left[\omega_{i}\left|\omega_{j}\right| \omega_{k}\right]\right) x_{i j k}+\ldots
\end{aligned}
$$

where the $\omega^{\prime} s$ are from $A^{l}(M) ; \omega_{i}=\rho^{(1)} p_{2}{ }^{*} \alpha_{i} \ldots$.
Example. Let M be a manifold such that $H^{1}(M ; k)$ is
determined by the closed 1 -forms $a_{1}, a_{2}, c_{11}, c_{12}, c_{21}$, c_{22}, b_{1}, b_{2}. Furthermore assume that the matrix Massey product $\langle a, c, b\rangle$, where $a=\left(a_{1}, a_{2}\right), c=\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)$, $b=\left(b_{1} b_{2}\right)$ is trivial. Such a manifold exists. For example a connected nilpotent Lie group with these properties can be easily found.

In this case the minimal model M^{*} for the lower central series of $G=\pi_{1}(M)$ is the free algebra with the generators $\alpha_{1}, \alpha_{2}, \omega_{11}, \omega_{12}, \omega_{21}, \omega_{22}, \beta_{1}, \beta_{2}$, where
$\rho^{(1)} p_{2}{ }^{*} \alpha=a, \rho^{(1)} p_{2}{ }^{*} \omega=c$ and $\rho{ }^{(1)} p_{2}{ }^{*} \beta=b$. The defining system for the matrix Massey product $\langle\alpha, \omega, \beta\rangle$ in M^{*} is given by the matrix

$$
\begin{aligned}
& \left(\begin{array}{cccc}
0 & \alpha & \gamma & \sigma \\
0 & 0 & \omega & \varepsilon \\
0 & & 0 & \varepsilon
\end{array}\right) \quad \omega=\left(\begin{array}{ll}
\omega_{11} & \omega_{12} \\
\omega_{21} & \omega_{22}
\end{array}\right), \varepsilon=\binom{\varepsilon_{1}}{\varepsilon_{2}}, \beta=\binom{\beta_{1}}{\beta_{2}} . \\
& \text { s case } M^{*}=(n) \quad M^{*}, n \geq 3 .
\end{aligned}
$$

$$
\begin{aligned}
& I\left(\gamma_{i}\right)=\gamma_{i}+\sum \alpha_{j} \otimes \omega_{j i}, I\left(\varepsilon_{i}\right)=\varepsilon_{i}+\sum \omega_{i j} \otimes \beta_{j}, \\
& I(\sigma)=\sigma+\Sigma \gamma_{i} \otimes \beta_{i}+\Sigma \alpha_{i} \otimes \varepsilon_{i}+\sum \alpha_{i} \otimes \omega_{i j} \otimes \beta_{j}
\end{aligned}
$$

If a, c, b, a, e, s stand for the image of $\alpha, \omega, \beta, \gamma, \varepsilon, \sigma$ in $A^{l}(M)$ and if A, C, B, G, E, S are the duals of $\alpha, \omega, B, \gamma, \varepsilon, \sigma$; with appropriate indices. Then T as an element of $c^{0} \otimes, L, L_{n}=L, n \geq 3$, takes the form

$$
\begin{aligned}
T & =I+\Sigma \xi\left[a_{i}\right] A_{i}+\Sigma \xi\left[c_{i j}\right] c_{i j}+ \\
& +\Sigma \xi\left[b_{i}\right] B_{i}+\Sigma \xi\left(\left[g_{i}\right]+\Sigma\left[a_{j} \mid c_{j i}\right]\right) G_{i}+ \\
& +\Sigma \xi\left(\left[e_{i}\right]+\Sigma\left[c_{i j} \mid b_{j}\right]\right) E_{i}+ \\
& +\xi\left(\Sigma\left[a_{i}\left|c_{i j}\right| b_{j}\right]+\Sigma\left[g_{i} \mid b_{i}\right]+\right. \\
& \left.+\Sigma\left[a_{i} \mid e_{i}\right]+[s]\right) s .
\end{aligned}
$$

Remark. These two examples are typical in the sense that they show what form the coefficients of T take with respect to the basis for L.

2.3 De Rham theorem

Theorem 3. The coefficients $\Omega\left(\alpha_{i}^{(n)}\right.$) [and also $\left.\Omega_{0}\left(\alpha_{i}^{(n)}\right)\right\}$ are homotopy periods.

From the thoorem we get immediately
Corallary. The element $T \in C^{0}(\bar{\otimes}) L$ determines a unique L-valued function on the group G.

Proof of the theorem. $T \in C^{0} \otimes L$ means that for any loop $\lambda: I^{0} \rightarrow \Omega(M), T(\lambda) \varepsilon L$, i.e. T is a well defined function on the space of loops $\Omega(M)$. Observe that the coefficients of T are linear combinations of sums of iterated integrals of the form

$$
\xi\left(\left[\omega_{l}|\ldots| \omega_{r}\right]\right) \varepsilon c^{0}, \omega_{i} \varepsilon A^{l}(M)
$$

where $\xi=\sigma \cdot \hat{H}_{0}, \hat{H}_{0}: \bar{B}\left(A^{*}\left(I^{n+1}\right)\right) \rightarrow A^{l}$, * for any $n \geq 1$. For the polynomial $I\left(\omega_{i}^{(n)}\right.$) associated with a pyramid $P\left(\alpha_{i}^{(n)}\right)$ it can be shown by a direct computation, similar to that from the proof of Proposition 2 , that $\hat{H}_{0}\left(I\left(a_{i}^{(n)}\right)\right)$ is a closed 1 -form on I^{m+1} for any $\alpha: I^{m} \rightarrow \Omega(M)$, $\hat{\alpha}: I^{m+1} \rightarrow M ; a_{i}^{(n)}=\hat{\alpha}^{*}\left(\omega_{i}^{(n)}\right), m=1$. Then from the Stokes formula it follows that $\Omega\left(\alpha_{i}^{(n)}\right)$ is a homotopy invariant. similarly for $\Omega_{0}\left(\alpha_{1}^{(n)}\right)$.

Let $\lambda_{n}: L \rightarrow I_{n}$ be the projection. Then $(n) T=\lambda_{n} \cdot T$ is an I_{n}-valued function on $G=G_{1}$. Thus we have the following picture

The coefficients of $(n)^{T}$ involve the iterated integrals of the form $\xi\left(\left[\omega_{1}|\ldots| \omega_{r}\right]\right)$ where r is at most equal to $n, r \leq n$.

Proposition 8. The function $(n)^{T}$ is zero on the subgroup G_{n+1}.

Proof. Let $\alpha: I^{0} \rightarrow \Omega(M), \beta: I^{0} \rightarrow \Omega(M)$ be representations for $\bar{\alpha} \varepsilon G_{1}, \bar{\beta} \varepsilon G_{S}$. Then one can show directly from the definition of ξ that
$\xi\left(\left[\omega_{1}|\ldots| \omega_{r}\right]\right)(\alpha \beta)=\xi\left(\left[\omega_{1}|\ldots| \omega_{r}\right]\right)(\alpha)+\xi\left(\left[\omega_{1}|\ldots| \omega_{r}\right]\right)(\beta)$, where $\alpha \beta$ is the composition of loops. From here it follows that $\bar{\zeta}\left(\left[\omega_{I}|\ldots| \omega_{r}\right]\right)([\alpha \beta])=0$ whenever $r \leq s$.
A more detailed computational proof of this proposition can be found in [3].

Corallary. $(n)^{T}$ induces the map
$(n)^{T}: G_{n} / G_{n+1} \rightarrow L_{n}$.
Let us denote $g r G_{G}={ }_{n} \oplus_{1} g r_{n} G, g r_{n} G=G_{n} / G_{n+1}$. grG has a structure of a Lie algebra defined by the commutator
on G. The family of the maps $(n)^{T}$ defines a unique map

$$
\Gamma: g r G \rightarrow L
$$

as a limit of the sequence of maps Γ
Proposition 9. The maps Γ is a morphism of the Lie algebras.

Proof. From the proof of the last proposition if follows that only the "longest" iterated integrals in $\Omega\left(\alpha_{i}^{(n)}\right)$ enter when this is applied to an element α representing the n-fold commutator $\alpha \in G_{n}$. Then the proof proceeds by induction.

By tracing the duals $X_{i}^{(n)}$ of the individual generators $\alpha_{i}^{(n)}$ in $(n) M^{*}$ it can be shown that

Theorem 4. For each $n \geq 1$

$$
\Gamma_{n}: g r_{n} G \otimes k \rightarrow I_{n}
$$

is an isomorphism of Lie algebras.
Remark. The Proposition 9 and Theorem 4 are more precise statements then the Theorem 3.4.1 in [4], even over C and R.

The Theorem 4, over Q, was stated and a direct proof was sujested (without the map T) by Sullivan in his lectures in Paris in 1973.

As was already mentioned in the introduction, I have
chosen an approach which ties together the work of Chen, May and Sullivan.

References

[1] J.F. Adams
On the cobar construction, Colloque Lauvain 1956, 81-87 (same in Proc. Nat. Acad. Sc. 42, 409-412 (1956)).
[2] H. Cartan, Théories cohomologiques, Inventiones Math. 35 (1976), 261-272.
[3] K.T. Chen,
Algebras of iterated path integrals and fundamental groups, T.A.M.S. 156 (1971), 359-379.
[4] K.T. Chen,
Iterated integrals of differential forms and loop space homology, An. Math. 97 (1973), 217-246.
[5] J.P. May, Metric Massey products, J. Algebra 12 (1969), 533-568.
[6] D. Sullivan, Infinitesimal computations in topology, (preprint).
[7] D. Sullivan,
Differential forms and topology of manifolds, Proceedings of the Conference on manifolds, Tokyo, 1973.
[8] C. Watkiss, Cochaines commutatives sur les ensembles simpliciaux, (preprint).

[^0]: * Part of the research was done while the author was a guest at the University of Lille.

