Théorie spectrale
Publications du Département de mathématiques (Lyon), Théorie spectrale, no. 8C (1982), pp. 1-198.
@article{PDML_1982___8C_A1_0,
     author = {Buchwalter, H. and Tarral, D.},
     title = {Th\'eorie spectrale},
     journal = {Publications du D\'epartement de math\'ematiques (Lyon)},
     pages = {1--198},
     publisher = {Universit\'e Claude Bernard - Lyon 1},
     number = {8C},
     year = {1982},
     mrnumber = {719649},
     zbl = {0532.47014},
     language = {fr},
     url = {http://archive.numdam.org/item/PDML_1982___8C_A1_0/}
}
TY  - JOUR
AU  - Buchwalter, H.
AU  - Tarral, D.
TI  - Théorie spectrale
JO  - Publications du Département de mathématiques (Lyon)
PY  - 1982
SP  - 1
EP  - 198
IS  - 8C
PB  - Université Claude Bernard - Lyon 1
UR  - http://archive.numdam.org/item/PDML_1982___8C_A1_0/
LA  - fr
ID  - PDML_1982___8C_A1_0
ER  - 
%0 Journal Article
%A Buchwalter, H.
%A Tarral, D.
%T Théorie spectrale
%J Publications du Département de mathématiques (Lyon)
%D 1982
%P 1-198
%N 8C
%I Université Claude Bernard - Lyon 1
%U http://archive.numdam.org/item/PDML_1982___8C_A1_0/
%G fr
%F PDML_1982___8C_A1_0
Buchwalter, H.; Tarral, D. Théorie spectrale. Publications du Département de mathématiques (Lyon), Théorie spectrale, no. 8C (1982), pp. 1-198. http://archive.numdam.org/item/PDML_1982___8C_A1_0/

[1] N. Bourbaki, Théories spectrales, chap. 1 et 2, Hermann, Paris, (1967).

[2] L. H. Loomis, An introduction to Abstract Harmonic Analysis, Van Nostrand, New-York, (1953). | MR | Zbl

[3] N. Dunford et J. T. Schwartz, Linear operators I et II, Interscience Publishers, New-York, (1957). | Zbl

[4] M. Reed et B. Simon, Methods of modern mathematical physics, I, (Functional Analysis), II (Fourier Analysis, self-adjointness), Academic Press, (1975). | MR | Zbl

[5] F. Riesz et B. S. Nagy, Leçons d'Analyse Fonctionnelle, Gauthier-Villars, Paris, (1953). | Zbl

[6] M. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., vol. 15, (1932). | MR | Zbl

[7] N.I. Akhiezer, The classical moment problem, Oliver and Boyd, Edimbourg, (1965).

[8] J.A. Shohat et J.D. Tamarkin, The problem of moments, Amer. Math. Soc, Math., Surv., 1, (1943). | MR | Zbl

[9] G.W. Mackey, The mathematical Foundations of Quantum Mechanics, Benjamin Inc., New-York, (1963). | Zbl

[10] E.G. Beltrametti et G. Cassinelli, The Logic of Quantum Mechanics, Encyclopedia of Math. and its Appl., Addison-Wesley, (1981). | MR | Zbl

[11] C. Cohen-Tannoudji, B. Diu et F. Laloe, Mécanique quantique I, Hermann, Paris, (1973).

[12] A. Böhm, Quantum Mechanics, Springer Verlag, Berlin, (1979). | MR | Zbl

[13] A. E. Nussbaum, Quasi-analytic vectors, Arkiv für Math., 6-10, (1965), 179-191. | MR | Zbl

[14] D. Masson et W.K. Mc Clary, Classes of C Vectors and Essential Self-Adjointness, J. Funct. Analysis, 10, (1972), 19-32. | MR | Zbl