
PUBLICATIONS DU DÉPARTEMENT DE MATHÉMATIQUES DE LYON

GISELA A. LASSNER
Special Perturbations of Gibbs States
Publications du Département de Mathématiques de Lyon, 1985, fascicule 1A
, p. 1-11
<http://www.numdam.org/item?id=PDML_1985___1A_A2_0>

© Université de Lyon, 1985, tous droits réservés.

L’accès aux archives de la série « Publications du Département de mathématiques de Lyon » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pé-
nale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PDML_1985___1A_A2_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SPECIAL PERTURBATIONS OF GIBBS STATES 

by Gisela A . LASSNER 

I . Introduction. 

A characteristic of equilibrium states is their stability with respect 
to exterior perturbations. A perturbation of the system is an exterior action 
on the system under consideration. If the equilibrium state is the Gibbs state 

p = 1/Z e " № o , (1.1) 

where is the tiamiltorrian, 3=1 / k T the nortned inverse temperature, then art exterior per
turbation means an alteration of the Hamiltonian H to the perturbed one 

. . . V °. 
H = H Q + V . Then the perturbed equilibrium state p is the Gibbs state to the 
Hamiltonian H. One expects that the perturbed equilibrium state returns to the 
unperturbed state (1.1), if the perturbation converges to zero in an appropriate 
sense. 

The problem is non trivial for several reasons. On the one hand one get 
the real equilibrium state p only by going over to the thermodynamical limit 
in (1.1). On the other hand one has to consider very special convergences of 
the perturbations V. From physical point of view it is evident that not every 
family of "small perturbations11 leads already to small alterations of the 
equilibrium states. It belongs to the most important results of statistical 
physics that the equilibrium states for C*-and W*-dynamical systems can be 
characterized mathematically rigorous by their properties of stability (/1 / , 5 . 4 ) . 

The admissible perturbations are local perturbations / 2 / , i.e. they converge 
to zero, and they are localized silmutaneously in a bounded region 

3 
(of R or of the lattice). 
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For such perturbations also that the dynamic T of the perturbed 
system as group of automorphism on the algebra of observables converges to the 
dynamic of the unperturbed system, if the perturbation V converges in a 
certain sense to 0. But even for C*-dynamical systems it is not sufficient 
that V converges in the norm to 0 by fixed locality. The result is only that 
the perturbed equilibrium state converges to p , if X tends to 0 
(/1/,5.4.2). 

Now it is known that even for simple models like the soluble BCS-Bogoljubov-
model of the superconductor the classical treatment in the frame of C*-dynamical 
systems is not possible /7,8/. At this one has already to turn to more general 
topological algebras and quasi-algebras /4,5/ for a rigorous mathematical 
treatment. This makes clear that there will be also similar effects for the 
choice of topologies on the set of admissible "small" perturbations. These 
investigations are yet at the very beginning and we shall investigate in this 
paper only one special class of perturbations. 

We shall restrict us to Bose systems with a finite number of freedom 
and demonstrate at this model a number of characteristics of the continuity 
behavior of the equilibrium states. Because the algebra of observables will 
generated by unbounded operators, we shall be confronted with the topological 
questions connected with these algebras. But since we restrict us to finite 
number of freedom the Gibbs state is given by the density matrix (1.1). 
Therefore the entropy S ( p ) = - tr plog p is well defined. As appropriate 
perturbations we regard only such that the entropy changes continuously in 
dependence on the perturbations. 

I I . A class of states. 

In this section we introduce a class of states with an appropriate 
topology, such that the entropy becomes a continuous functional on it. 

The following results are not only restricted to Bose systems but they 
are valid for all Hamiltonians whose eigenvalues satisfy the following 
increasing condition. 
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Let be E_j, > 0 the eigenvalues of H q and (j)̂  the corresponding 
normalized eigenvectors. The vectors <j>̂  form an orthonormal basis of the 
Hilbert space, 

H d>. = E. d). , i=1,2 . (2.1) 
0 1 1 1 

For our aim the eigenvalues must converge to infinity at least such fast 
that 

00 
1 e~Ei i < oo for all k > 0. ( 2 . 2 ) 
i=1 

These assumptions are satisfied for example if for i -> oo the eigenvalues F. 
grow faster as i , a > 0. 
These assumptions are satisfied for the Hamiltonian 

f 
H Q = H ° - uN = I e k a k a k - uN ( 2 . 3 ) 

k=1 

of the free Bose system, u < 0 is the chemical potential, N the number operator 
and e k > 0 . Let |n > = |n^,..•,n^> be the occupation number vectors 
of the Fock space, then 

V mX \ (£

k- (2-4) 

1 k=1 

are the eigenvalues of H q and we get 
I E ~ ( f + 1 ) < oo . ( 2 . 5 ) 

|n>^|o> 

If we number the vectors j n> in any order, <p^ = | n > £ > then the eigenvalues 
E. = Ei ^ satisfy ( 2 . 2 ) . l n>. 1 i 

The subset of all density matrices with finite entropy is a set of category 
I in the space of all density matrices /9/. Now we are defining a class % of 
matrices leading to finite entropy. 
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Let Z be the class of all matrices p = ( p ^ j ) satisfying the following 
conditions 

2 : p(p) = ( I | P i.| 2 i 4 j V / 2 < - . (2.6) 
i,j 

Z is even a Banach algebra with respect to the norm p(p). 

The such introduced norm p ( p ) is equivalent to the Hilbert-Schmidt norm 
2 2 

|| T p T || , where T = (t. .) is a diagonal operator with elements 

t.. = 6. .i. 
By Z + we denote the set of positive operators in Z . The density matrices 

in Z are the elements p £ Z + with trp = 1• One can prove the following 
theorem /3/. 

THEOREM 2.1. 

For every density matrix p 6 Z + the entropy S ( p ) = -tr plog p 

is finite and if p. -*- p f with respect to the norm P(.) than S ( p ) 

converges to S ( p f ) . 

Let H be the Hamiltonian (2.3) of the free Bose system and p = 1 /Z e o o o 
the corresponding Gibbs state, then p belongs to 2 , i.e. p £ Z • Indeed 

2 8 —RE ° ° one obtains P ( p ) = 1 / Z I i e p i < oo for all 3 > 0. 
-BE t ° 

Z = Z e i is the state sum. o 

I I I . Perturbations of the Gibbs state. 

Our laim is to perturb the Hamiltonian H such that the resulting Gibbs state 
p ^ = 1 / Z ^ e o belongs to Z and depends continuously on V . 

The arising difficulties come from the non-commutativity of the free 
Hamiltonian H with V. o 

Our operators V are infinite dimensional matrices V=(v^). The diagonal 
elements should not grow faster than the eigenvalues of the operator H^ and 
the matrix elements along every row and column must decrease sufficiently fast. 
Precisely, we introduce the following class of matrices. 
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DEFINITION 3.4. 

Let IP be the space of all linear operators V = (v ) satisfying 
run 

the following condiitons 

||V|| - sup E -a|v..| + I ]v | i 3 j 3 (3.1) 
i^j 

with 0 < a < 1. 

For every V £ IP we denote by the diagonal part of V and by the 
rest of V such that 

V = V D + V N . (3.2) 

Let $ N be the class of all operators V with 

||V||N = I |v | i 3 j 3 < co (3.3) 
i.j 

and correspondingly let 1»̂  be the class of all diagonal operators V with 

||V|| D = sup E T a | V i i | < oo. (3.4) 

In general V £ IP is a unbounded operator. The advantage of the decompo
sition (3.2) of V £ IP consists in the fact that we now have as perturbation 
a sum of an unbounded but diagonal operator and a noncommuting with but 
bounded operator V^. 

Now we state the main theorem of the paper. 

THEOREM 3.2. 

The Gibbs state p v = 1/Z e ^ H
0

+ V ^ varies continuously in % , if 

V = V* varies continuously in tp with respect to the norm || v||a« 

Especially, the entropy = -tr log p ^ depends continuously on V. 

For the proof of Theorem 3.2 we separate first the diagonal part of 
the perturbation. 
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LEMMA 3.3. 

If is a diagonal operator of V), then e ^o +^D^ 6 2 and for 

|| V D - V^|| D + 0 follows p C e ^ V ' V - e" ( Ho + VD ;) + 0 where 

is a fixed operator. 

The proof is straightforward considering that H and are commuting 
operators /3/ and the diagonal elements increase at most like 

In the following we denote by H=H^+V D the diagonal part of H Q + V , V G IP. 
The theorem 3.2 is now reduced to the following theorem. 

THEOREM 3.4. 

The operator e £ % depends continuously on V = V* € U)^. 

IV . Proof of theorem 3 . 4 . 

To prove theorem 3.4 we shall apply the Trotter product formula /6/ 

, -BH/n -PV/n.n -g(H+V) n s-lim ( e e ) = e . (4.1; 
n oo 

First we prove the following fundamental lemma. 

LEMMA 4.1 . 

Let s^ = (e ^ n e ^ / n ) n £>e ££ e operator on the left hand side of (4.1) 

2 3 

then || T s^ T c for a fixed c and all integers n. 

PROOF. We have the following estimations. 

H T 2 s nT 3|| - ||T 2(e- H / ne- V/ n) nT 3 || 

= || T 2 e " H / n T - 2 + 5 T 2 " W e"V/n T-2 + | ,2 - | ^ . - 2 + J £ # 

. T 2" T e " V / n T ~n~ . .. T ^ e " V / n T _ 2 + TT || (4.2) 
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N< ||T 2 e -^T" 2 + l || || T2 ~ ^ e - V / n T - 2 + f || . . . 

9 c n-1 , 0 5n 0 5n , 0 5n 
|| T 2 " 5 — e " ^ T - 2 IT || || T ~ ~a e , / / nT- 2 ~n || . 

We have divided the norm (4.2) in a product of 2n operator norms. 

Because of the commutativity of the operators H and T we get in (4.2) a 
product of n times the norm || T~^ne H^ n|| . It follows from (2.2) that T~*e H 

is a Hilbert-Schmidt operator. Let y be a constant with 

|| TV H | | V< Y • (4.3) 

5 —H 
Since (T e ) is self-adjoint and bounded one has 

|| T5 / n e - H / n | | ^ y 1/» . (4.4) 

Further we have in (4.2) a product of n norms of the following kind 

|| 1 V T || , for -3 ̂  X $ 3. (4.5) 

For every 1, -3 < 1 < 3 , we have the following estimation 

I I 1 -K , i ,2 .2 A.-2JL1/2 , , 
I I T V T H H . S . = ( . Z . I vijl 1 J > « . Z . I ^ j l 1 J 

N< I | v | i 3 j 3 = || V|| = K . (4.6) 
i,j 

On the other hand we get by applying the inequality of the norms 

|| V|| ^ || V11 g the estimation 

|| T e T || ^ I 1/k! || T V T || , (4.7) 
k 

and consequently it follows from (4.6) and (4.7) 

H / e " V / n T~*|| = e K / n for -3 A ̂  3 , (4.8) 

where K is a constant. All estimations (4.2), (4.4) and (4.8) together yield 

|| T 2 s n T 3 || < y eK = c. (4.9) 
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Further, the following to lemmas will be necessary. 

LEMMA 4.2. 

Let a sequence of bounded operators ||An|| < c = const., converging 

strongly to A on Jf, and G a Hilbert-Schmidt operator. Then 

I I V - A G I U . s . * ° -

This lemma can be shown by standard estimations with Hilbert-Schmidt operators. 

LEMMA 4.3. 

, -H/n -V/n*n 7 ^ c ~(H+V) T 2 _3 J.f s^ = (e e ) converge strongly to S = e , t/3en T s^T 

converges strongly to T 2ST 3. 

PROOF. T and H are commuting and therefore 
T2 ( e-H/n e-V/ N )n T 3 0 = ( ^ - d W l j n T 5 0 _ 

2 -2 
Now T VT is bounded, then 

||T2VT-2|| * ||T2VT-2||h - ( z I v | 2 i V 4 ) 1 7 2 

i,j J 

21 |v |iV 2 4 Z | v.. | i 3 j 3 - ||V|| . 
i, j 

2 -2 
By applying the Trotter formula (4.1) and the fact that T VT is bounded the 

? -2 
2 3 ~ (H+T VT ) 5 T s^T (J) converges to e T <j> for (J) £ Q) . Because Q) is dense in 

2 3 2 3 Hilbert-space and j| T s^T || ̂  c , lemme 4.1, T s^T <j> converges to 

T 2ST 3 <J) for all cj) e . 

Now we need yet some other facts. First we remark that W % T is not only 
N 

a Banach space but also a Banach algebra. 

LEMMA 4.4. 
Let V,W £ 1»N , then the norm || VW|| N is multipliable, i.e. 

l l v l l N l l w l l N -
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It is easy to see that 

if J k 

< I | v. k|iV I |w | j V 3 ^ ||V||N ||W||H . 
i,k k,j 

A consequence of Lemma 4 . 4 is the following fact. 

LEMMA 4 . 5 . 

-V -V 

If V £ U)^ , then e £ and e depends continuously on W. Futher-

more, || e"V|| ^ e " H V H N 
Finally we need yet the next lemma. 

LEMMA 4 . 6 . 

Let W £ U)^ and p £ 2 , then pW £ 2 and it is continuous in both 

factors. 

If W £ tPN then we must estimate the norm p (pW) ( 2 . 6 ) . 

/ T T \ 2 ^ • ^ 12 . 4 . 4 ^ 
P ( p W ) = I | I p . k w k | i j 4 

if J k 

.< I ( I | P i k | 2 I K , / ) iV.< P(P) 2 | | W | | N

2 . 
i,j k k1 J 

Now we can give the proof of Theorem 3 . 4 : 

Let be V, V f £ U)^ and V 1 a fixed operator, then we have to show that 

||T2 ( e " ( H + V e ~ ( H + V , ) ) T 2 | | H s + 0 for V + V . ( 4 . 1 0 ) 

9 



We get the following inequality 

| , T 2 ( e - ( H + V ) _ e - ( H + V , ) ) T 2 | | H S (4.11) 

|| T 2 ( e - ( H + V ) l V 1 - T 2 ( e - H / n e - V / n ) n T V 1 || ̂  ( I ) 

|| T ^ e - ^ ^ T V ^ T ^ e - ^ e ^ ' ^ V T - 1 || ^ 

|| T 2 ( ( e - H / n e - V / n ) n - ( e - H / V V ' / n ) n ) T 2 | | ^ ( m ) 

That the first and second therm of (4.11) will be less then e/3 for 
sufficiently large n is a consequence of Lemma 4.2 and lemma 4.3 remembering 

-1 
that T is a Hilbert-Schmidt operator. It remains to estimate term (III) of 
(4.11) for this fixed n. For this aim we use the identity 

, -H/n -V/tixti f -H/n -Vf/ruii (e e ) - (e e ) = 

* u -H/n -Vf/n.i-1 r -H/n, -V/n - V f / n v -i „ 1 9 x = I i(e e ) [e (e - e ) ]. (4.12) 
i=1 

, -H/n -V/n^n-i^ . (e e ) } . 

Now we obtain for (III) 

| | T 2 ( ( e - H / V V / V - ( e - H / V V ' / n ) n ) T 2 | | H S > 

.< Z || T ^ e ^ V ^ V - V 2 ! ! .|| T- 2(e- H / ne- V / n) n- iT 2|| . 
i=1 

l]T2 e-H/n ( e-V/n_ e - V , / n ) T 2 | | H ^ 

<: I n 3 ||T2 e - H / n ( e " V / n - e - V ' / n ) T 2 | | H . (4.13) 
i=1 

where r|, 3 are constant . That the first two norms in (4.13) are constant is 
a consequence of Lemma 4.6. The third norm in (4.13) will be less e/3 if V is 
sufficiently near to V T. This follows from lemma 4.6 and lemma 4.5. 

Now the main theorem 3.4 is completely proved. 
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